Tag: sport

Goalies Really are Wired Differently to Other Soccer Players

Photo by Vidar Nordli-Mathisen on Unsplash

In soccer, goalkeepers have a unique role: they must be ready to make split-second decisions based on incomplete information to stop their opponents from scoring a goal. Now researchers reporting in Current Biology on have some of the first solid scientific evidence that goalkeepers show fundamental differences in the way they perceive the world and process multi-sensory information.

“Unlike other football players, goalkeepers are required to make thousands of very fast decisions based on limited or incomplete sensory information,” says Michael Quinn, the study’s first author at Dublin City University who is also a retired professional goalkeeper and son of former Irish international Niall Quinn. “This led us to predict that goalkeepers would possess an enhanced capacity to combine information from the different senses, and this hypothesis was confirmed by our results.”

“While many football players and fans worldwide will be familiar with the idea that goalkeepers are just ‘different’ from the rest of us, this study may actually be the first time that we have proven scientific evidence to back up this claim,” says David McGovern, the study’s lead investigator also from Dublin City University.

Based on his own history as a professional goalkeeper, Quinn already had a feeling that goalkeepers experience the world in a distinctive way. In his final year working on a psychology degree, he wanted to put this notion to the test.

To do it, the researchers enlisted 60 volunteers, including professional goalkeepers, professional outfield players, and age-matched controls who don’t play soccer. They decided to look for differences among the three groups in what’s known as temporal binding windows – that is, the time window within which signals from the different senses are likely to be perceptually fused or integrated.

In each trial, participants were presented with one or two images (visual stimuli) on a screen. Those images could be presented along with one, two, or no beeps (auditory stimuli). Those stimuli were presented with different amounts of time in between.

In these tests, trials with one flash and two beeps generally led to the mistaken perception of two flashes, providing evidence that the auditory and visual stimuli have been integrated. This mistaken perception declines as the amount of time between stimuli increases, allowing researchers to measure the width of a person’s temporal binding window, with a narrower temporal binding window indicating more efficient multisensory processing.

their tests showed that goalkeepers had marked differences in their multisensory processing ability. More specifically, goalkeepers had a narrower temporal binding window relative to outfielders and non-soccer players, indicating a more precise and speedy estimation of the timing of audiovisual cues.

The test results revealed another difference too. Goalkeepers didn’t show as much interaction between the visual and auditory information. The finding suggests that the goalies had a greater tendency to separate sensory signals. In other words, they integrated the flashes and beeps to a lesser degree.

“We propose that these differences stem from the idiosyncratic nature of the goalkeeping position that puts a premium on the ability of goalkeepers to make quick decisions, often based on partial or incomplete sensory information,” the researchers write.

They speculate that the tendency to segregate sensory information stems from goalies need to make quick decisions based on visual and auditory information coming in at different times. For example, goalkeepers watch how a ball is moving in the air and also make use of the sound of the ball being kicked. But the relationship between those cues in time will depend on where the outfielder making the shot is on the field. After repeated exposure to those scenarios, goalkeepers may start to process sensory cues separately rather than combining them.

The researchers say they hope to explore other questions in future studies, including whether players with other highly specialised positions, such as strikers and centre-backs, may also show perceptual differences. They’re also curious to know which comes first. “Could the narrower temporal binding window observed in goalkeepers stem from the rigorous training regimens that goalkeepers engage in from an early age?” McGovern asks. “Or could it be that these differences in multisensory processing reflect an inherent, natural ability that draws young players to the goalkeeping position? Further research that tracks the developmental trajectory of aspiring goalkeepers will be required to tease between these possibilities.”

Source: Cell Press via MedicalXpress

New Test Picks up Concussion Biomarkers in Saliva

A new test has been found to effectively pick up concussion biomarkers in the saliva of rugby players.

This paves the way for a non-invasive, easy-to-use pitch-side test to rapidly detect concussions for early treatment. Concussion is a serious problem in contact sports, with players such as college American Football athletes consistently underestimating its risk. Missing a concussion can have a range of consequences, from delayed recovery to more serious (albeit rare) injuries such as traumatic brain swelling.

Detecting concussions requires an assessment by a clinician of the signs and symptoms of the injury. However, recent advances in DNA sequencing technology have made it possible to use small non-coding RNAs (sncRNAs) as biomarkers in rapid tests. sncRNAs regulate the expression of different cellular proteins associated with various diseases, such as cancer and Alzheimer’s disease.

t is thought that since saliva can receive cellular signals directly from the cranial nerves in the mouth and throat, biomarkers from a brain injury would quickly show up.

A panel of 14 sncRNAs differentiated concussed players from those where traumatic brain injury had been suspected but ruled out, and from the comparison group, both straight after the game and 36–48 hours later.

Over two seasons, samples were collected before the rugby season began from 1028 players from the two elite professional tiers, and during standardised ‘gold standard’ head injury assessments at three time points—during the game, afterwards, and 36–48 hours later from 156 of these players .

The researchers also took saliva samples from a comparison group of 102 uninjured players, as well as 66 with muscle or joint injuries, and so had not had head injury assessments.

However, the researchers stressed that the observational study nature and design of this study cannot show that the biomarker test is any better than a gold standard clinical test for concussion.

“In community sport, [sncRNAs] may provide a non-invasive diagnostic test that is comparable in accuracy to the level of assessment available in a professional sport setting,” while the test could be added to current head injury evaluation protocols at the elite level,” they add.

And as the biology of concussion is still not fully understood, sncRNAs might help to shed light on the response to injury as this evolves over time, they suggest.

“The detection of signatures of concussion at early time points in saliva (a non-invasively sampled biofluid) presents both at the pitch side, and in primary care and emergency medicine departments, an opportunity to develop a new and objective diagnostic tool for this common clinical presentation,” they conclude.

As an addendum to their findings, they added: “A patented salivary concussion test is in the process of being commercialized as an over-the-counter test for elite male athletes.

“Meanwhile our research team aims to collect further samples from players in two elite men’s rugby competitions to provide additional data to expand the test and develop its use. This will guide the prognosis and safe return to play after concussion and further establish how the test will work alongside the head injury assessment process.”

The researchers plan to add more participants to the SCRUM study, such as female athletes and community players.
Source: Medical Xpress

Journal information: Valentina Di Pietro et al. Unique diagnostic signatures of concussion in the saliva of male athletes: the Study of Concussion in Rugby Union through MicroRNAs (SCRUM), British Journal of Sports Medicine (2021). DOI: 10.1136/bjsports-2020-103274