Tag: skin conditions

Topical Corticosteroids Linked to Osteoporosis Risk

Source: Pixabay

New research indicates that higher doses of topical corticosteroids, commonly used to treat inflammatory skin conditions, are linked with elevated risks of osteoporosis and bone fractures associated with osteoporosis. The findings are published in the Journal of the European Academy of Dermatology and Venereology.

Drawing on the Taiwan National Health Insurance Research Database, the study’s investigators selected 129 682 osteoporosis cases and 34 999 major osteoporotic fracture (MOF) cases and matched them with 518 728 and 139 996 controls (without osteoporosis or MOF) by sex and age.

The team found clear dose–response relationships between long-term use of topical corticosteroids and osteoporosis and MOF, as well as differences in sex and age.

All topical corticosteroids prescriptions were converted to prednisolone equivalents (mg) according to their anti-inflammatory potency. Effects were not clear in exposure periods of six or 12 months, but effects were seen when analysis was extended to the longer term (three to five years). Compared with no doses, low, medium, and high cumulative of doses topical corticosteroids were associated with 1.22-, 1.26-, and 1.34-times higher odds of developing osteoporosis over five years. These respective doses were linked with 1.12-, 1.19-, and 1.29-times higher odds of experiencing MOF. Women had higher risks of osteoporosis and MOF than men. Also, younger people (under the age of 50 years) had a higher risk of osteoporosis compared with other age groups.

“This study emphasises that using topical corticosteroids to treat inflammatory skin conditions should be done very carefully and clinicians should be aware of these potential side effects,” said corresponding author Chia-Yu Chu, MD PhD, of National Taiwan University Hospital and National Taiwan University College of Medicine.

Source: Wiley

New Type of Skin Cell Reveals Secrets of Inflammation

The surprise discovery of a new type of cell explains how distress to the skin early in life may prime a person for inflammatory skin disease later, according to a new study in Nature. This finding will likely lead to treatments for autoimmune disorders like scleroderma, and inform understanding of inflammatory disease.

“The results reinforce the idea that what you’re exposed to initially may have lasting ramifications,” said lead researcher Michael Rosenblum, MD, PhD. “It appears that early exposure to inflammation can, through these cells we discovered, imprint an ability for tissues to develop inflammatory disease later in life.”

The team came across this new type of cell while investigating the effects of certain actions known to evoke immune response in mice. One of these actions involved knocking out a group of skin cells that suppress the immune system. Without that regulation, said Dr Rosenblum, a unique cell was observed that seemed to act as a shelter for pathogenic immune cells not typically seen in skin tissues.

“We had to knock out one cell population to see that they were controlling the growth and capacity of these other, unknown cells,” he said, noting that the new cells only became apparent in the tissue exposed to inflammatory triggers. “What normally would be a deserted island on the skin was now inhabited by all these strangers,” he said.

The team dubbed these strangers ‘TIFFs’ (Th2-interacting fascial fibroblasts) after the Th2 immune cells that they help to house. The location of TIFFs in the skin suggests that they belong to a group of cells that make up the fibrous connective tissue that is fascia, said lead author Ian Boothby, a graduate student in Dr Rosenblum’s lab.

“Because most organs have fascia of some sort, what we’re learning about TIFFs in skin may well be widely applicable to the rest of the body, meaning that these cells may play a role in a huge number of inflammatory diseases,” he said.

Boothby and Dr Rosenblum when skin without regulatory cells receives inflammatory triggers, the TIFFs spread like wildfire and become a sort of holding pen for the Th2 immune cells. Later in life, when there is even a small insult to the skin, Dr Rosenblum said, the TIFFs open their floodgates, unleashing the Th2 cells.

It seems that, through these cells, early exposure to inflammalation can leave a life-long imprint.

“All you need to do is push the immune system just a little bit, with a wound or with stress, to unleash all the pathogenic cells living in these TIFFs and create an exaggerated inflammatory response,” he said.

The researchers hypothesise that the exaggerated response may manifest as the creation of fibroses in the fascia, the driving force behind inflammatory skin diseases such as scleroderma.

To confirm the presence of TIFFs in human skin, the team obtained samples from volunteers with eosinophilic fasciitis (EF), a rare inflammatory disorder in which eosinophils build up in the skin fascia, the fibrous tissue between the skin and the muscles below it.

Comparing the EF samples to those of healthy skin, the researchers found TIFFs in both, but looked completely different. In healthy skin, the fascia forms a thin, spidery network between fat cells, while in the EF skin sample, the cells had expanded to form thick bands of fibrous tissue.

Revealing the mysteries of inflammation
TIFFs appear to be present in every organ, said Dr Rosenblum, usually found in the fascia surrounding major organs and serve a role in maintaining structure. They’re also prone to interacting with immune cells. He postulates that TIFFs might have evolved as a sort of emergency brigade in case of injury, able to jump-start repair in the case of internal injury.

“In patients with scleroderma or other fibrosing diseases like EF, that repair program may be kind of co-opted, resulting in this chronic wound-healing response,” said Dr Rosenblum. “If we can understand the biology of these cells, we can come in with drugs that revert them back to what they’re supposed to be doing.”

Source: University of California San Francisco

New Bacteria-based Atopic Dermatitis Treatment Proves Effective

A skin bacteria-based treatment for atopic dermatitis (AD) was successful in clinical trials, with no serious adverse effects and indications that it reduces eczema symptoms as well.

Atopic dermatitis (AD) is a common, chronic skin disorder which can have great impacts on the lives of sufferers. The disorder seems to result from the complex interplay between the skin, environmental effects and the immune system. Treatment involves a multifaceted approach that involves education, optimal skin care practices, anti-inflammatory treatment with topical corticosteroids and/or topical calcineurin inhibitors, the management of pruritus, and the treatment of skin infections. Severe flare-ups or more difficult-to-control disease may be treated with systemic immunosuppressive agents. Topical corticosteroids are the first-line treatment of choice, and seem to be prophylactic against flareups.

AD is associated with S. aureus colonisation, which induces a proteolytic breakdown of the epidermal barrier and dermal immune dysregulation. Inflammation results in further dysregulation of the skin microbial system. Commensal, coagulase-negative staphylococci (CoNS) were observed to produce bacteriocins which inhibit bacteria such as S. aureus, and these were not seen in the skin of most patients with AD. They hypothesised that reintroduction of CoNS would improve AD in patients.

Patients treated with MSB-0221, which incorporated the naturally occurring skin bacteria S. hominis (ShA9), had fewer AD-related adverse events (AEs) as compared with patients treated with a topical placebo, reported Richard L Gallo, MD, PhD, of the University of California San Diego and co-founder of the company developing MSB-0221.

“Besides its effect on decreasing the redness and itch in a subset of patients, and dramatically and rapidly decreasing the colonisation by Staph aureus, one of the unique aspects of this is that it’s specific for this organism,” said Dr Gallo. “It was not detrimental to other members of the microbiome that could help restore balance.”

Applying MSB-0221 to 54 adults, they found a reduction in S. Areus, which was associated with a significant decrease in AD symptoms compared to placebo.

The next step would be a larger, 150 patient clinical trial over 12 weeks.

“We don’t fully understand all of the ramifications, but there seems to be at least a subset of patients with atopic dermatitis whose disease is influenced and exacerbated by certain bacteria, such as Staph aureus,” said Bruce Brod, MD, of the University of Pennsylvania. “There is still sort of a chicken-and-egg aspect to the relationship. Did the skin inflammation come first or the Staph aureus?

“This is a proof-of-concept study that provides some evidence that shifting the balance of another bacteria that’s not pathogenic might have some therapeutic benefit in some patients with atopic dermatitis,” he added. “It provides support for larger studies looking at safe bacteria to shift the flora to a more favourable environment. At this point, it’s just another piece of a puzzle that could one day lead to different therapies. It’s probably not the whole picture, but in some patients, it may play a significant role.”

Source: MedPage Today

Journal information: Nakatsuji T, et al “Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase I randomized clinical trial” Nature Med 2021; DOI: 10.1038/s41591-021-01256-2.