Tag: side effects

Rare Disease Sheds Light on a Side Effect of Immunotherapy

Squamous cancer cell being attacked by cytotoxic T cells. Image by National Cancer Institute on Unsplash

A multinational collaboration co-led by the Garvan Institute of Medical Research has uncovered a potential explanation for why some cancer patients receiving a type of immunotherapy called checkpoint inhibitors experience increased susceptibility to common infections.

The findings, published in the journal Immunity, provide new insights into immune responses and reveal a potential approach to preventing the common cancer therapy side effect.

“Immune checkpoint inhibitor therapies have revolutionised cancer treatment by allowing T cells to attack tumours and cancer cells more effectively. But this hasn’t been without side effects – one of which is that approximately 20% of cancer patients undergoing checkpoint inhibitor treatment experience an increased incidence of infections, a phenomenon that was previously poorly understood,” says Professor Stuart Tangye, co-senior author of the study and Head of the Immunology and Immunodeficiency Lab at Garvan.

“Our findings indicate that while checkpoint inhibitors boost anti-cancer immunity, they can also handicap B cells, which are the cells of the immune system that produce antibodies to protect against common infections. This understanding is a critical first step in understanding and reducing the side effects of this cancer treatment on immunity.”

Insights to improve immunotherapy

The researchers focused on the molecule PD-1, which acts as a ‘handbrake’ on the immune system, preventing overactivation of T cells. Checkpoint inhibitor therapies work by releasing this molecular ‘handbrake’ to enhance the immune system’s ability to fight cancer.

The study, which was conducted in collaboration with Rockefeller University in the USA and Kyoto University Graduate School of Medicine in Japan, examined the immune cells of patients with rare cases of genetic deficiency of PD-1, or its binding partner PD-L1, as well as animal models lacking PD-1 signalling. The researchers found that impaired or absent PD-1 activity can significantly reduce the diversity and quality of antibodies produced by memory B cells – the long-lived immune cells that ‘remember’ past infections.

“We found that people born with a deficiency in PD-1 or PD-L1 have reduced diversity in their antibodies and fewer memory B cells, which made it harder to generate high-quality antibodies against common pathogens such as viruses and bacteria,” says Dr Masato Ogishi, first author of the study, from Rockefeller University.

Professor Tangye adds: “This dampening of the generation and quality of memory B cells could explain the increased rates of infection reported in patients with cancer receiving checkpoint inhibitor therapy.”

Co-author Dr Kenji Chamoto, from Kyoto University, says, “PD-1 inhibition has a ‘yin and yang’ nature: it activates anti-tumour immunity but at the same time impedes B-cell immunity. And this duality seems to stem from a conserved mechanism of immune homeostasis.”

New recommendation for clinicians

The researchers say the findings highlight the need for clinicians to monitor B cell function in patients receiving checkpoint inhibitors and point to preventative interventions for those at higher risk of infections.

Co-senior author Dr Stéphanie Boisson-Dupuis, from Rockefeller University, says, “Although PD-1 inhibitors have greatly improved cancer care, our findings indicate that clinicians need to be aware of the potential trade-off between enhanced anti-tumour immunity and impaired antibody-mediated immunity.”

“One potential preventative solution is immunoglobulin replacement therapy (IgRT), an existing treatment used to replace missing antibodies in patients with immunodeficiencies, which could be considered as a preventative measure for cancer patients at higher risk of infections,” she says.

From rare cases to insights to benefit all

 “Studying cases of rare genetic conditions such as PD-1 or PD-L1 deficiency enables us to gain profound insights into how the human immune system normally works, and how our own manipulation of it can affect it. Thanks to these patients, we’ve found an avenue for fine-tuning cancer immunotherapies to maximise benefit while minimising harm,” says Professor Tangye.

Looking ahead, the researchers will explore ways to refine checkpoint inhibitor treatments to maintain their powerful anti-cancer effects while preserving the immune system’s ability to fight infections.

“This research highlights the potential for cancer, genomics and immunology research to inform one another, enabling discoveries that can benefit the broader population,” says Professor Tangye.

Professor Stuart Tangye is a Conjoint Professor at St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney.

Source: Garvan Institute of Medical Research

SAHPRA Encourages the Safe Use of Medicines and Reporting of Suspected Side Effects This #MedSafetyWeek

The South African Health Products Regulatory Authority (SAHPRA) encourages members of the public to always report any suspected side effects they may experience from taking medicines, vaccines and/or using medical devices, to help make medicines safer for everyone.  While humanity benefits greatly from medicines in the treatment of illness and management of certain conditions, medicines may at times cause side effects. However, the risk of side effects and severe harm can be drastically reduced by taking medicines correctly and following the advice of a healthcare practitioner.

SAHPRA, together with over 90 other medicines and health products regulators as well as healthcare organisations globally, is participating in the annual #MedSafetyWeek awareness initiative, which takes place between 4 and 10 November 2024, under the theme “the importance of using medicines in the right way to prevent side effects, and to report side effects when they do occur”.

The awareness initiative is spearheaded by the Uppsala Monitoring Centre under the auspices of the World Health Organisation (WHO) Programme for International Drug Monitoring, a programme whose member organisations work nationally and collaborate internationally to monitor and identify adverse effects of medicines and vaccines, to reduce risks to patients, and to establish worldwide pharmacovigilance standards and systems.

During this #MedSafetyWeek and beyond, SAHPRA is calling upon patients, caregivers and healthcare professionals to utilise its reporting tools to report all suspected side effects and adverse reactions.

SAHPRA Chief Executive Officer, Dr Boitumelo Semete-Makokotlela, indicates that handling and storing as well as taking medicines as directed by a healthcare professional is key in reducing the incidence of adverse reactions. “Research shows that about half of all side effects are preventable. Patient safety is our top priority and during #MedSafetyWeek, we wish to remind patients to take their medicines as instructed and healthcare professionals to review therapies as well as each patient’s unique health conditions before prescribing or dispensing medicines,” says Dr Semete-Makokotlela.

SAHPRA calls upon the South African public and healthcare professionals to use either the MedSafety App or the eReporting portal both accessible on the SAHPRA website to report suspected side effects from health products. All reports are assessed and examined by SAHPRA to determine the correct steps to protect medicine users in South Africa from harm. The purpose is to gain better knowledge about known side effects and to discover new ones. This can result in warnings and changes to how a medicine is used. SAHPRA’s MedSafety App and eReporting portal can be used for reporting suspected adverse drug reactions from medicines, vaccines, herbal products, biological medicines and any quality issues relating to health products.

Source: SAHPRA

Chemo Drug may Cause Significant Hearing Loss in Longtime Cancer Survivors   

Photo by Brett Sayles

An interdisciplinary study led by researchers at the University of South Florida and Indiana University has uncovered significant findings on the long-term effects of one of the most common forms of chemotherapy on cancer survivors.

Published in JAMA Oncology, the study tracked a cohort of testicular cancer survivors who received cisplatin-based chemotherapy. The team followed the patients for an average of 14 years, revealing that 78% experience significant difficulties in everyday listening situations, negatively impacting their quality of life. This collaborative research is the first to measure real-world listening challenges and hearing loss progression in cancer survivors over a long period of time.

“It’s important that we understand the real-world effects of patients’ sensory problems and if we can understand that, then we can develop better therapeutic strategies and preventive measures to improve the long-term quality of life for cancer survivors,” said Robert Frisina, distinguished university professor and chair of the USF Department of Medical Engineering.

Cisplatin is commonly used in chemotherapy treatments for a variety of cancers, including bladder, lung, neck and testicular. It is administered intravenously and affects various parts of the body. However, the ears are particularly vulnerable as they have little ability to filter out the drug, causing it to become trapped. This leads to inflammation and the destruction of sensory cells that are critical for coding sound, causing permanent hearing loss that can progressively get worse well after cisplatin treatments are completed.

Lead author Victoria Sanchez, associate professor in the USF Health Department of Otolaryngology Head & Neck Surgery, said that despite the known risks, there’s a nationwide lack of routine hearing assessments for patients undergoing chemotherapy. “Most patients still do not get their hearing tested prior to, during or after chemotherapy. Our study highlights the need for regular auditory evaluations to manage and mitigate long-term hearing damage.”

The research team found higher doses of cisplatin led to more severe and progressing hearing loss, especially in patients with risk factors, such as high blood pressure and poor cardiovascular health. They also experienced increased difficulty hearing in common environments, such as a loud restaurant.

“It will be critically important to follow these patients for life. Their current median age is only 48 years, and eventually they will enter the years at which age-related hearing loss also begins to develop,” said Dr. Lois B. Travis, Lawrence H. Einhorn Professor of Cancer Research at Indiana University School of Medicine and a researcher at the IU Melvin and Bren Simon Comprehensive Cancer Center. This research is part of The Platinum Study, an ongoing research effort led by Dr. Travis and funded by the National Cancer Institute to study cisplatin-treated testicular cancer survivors.

The hope is that this study will inspire further investigation into alternative chemotherapeutic protocols and preventive measures, such as FDA-approved drugs to prevent or reduce hearing loss.

“This research gives oncologists the information they need to explore alternative treatment plans that could reduce the long-term side effects, such as altering the dosages and timing of the cisplatin in the treatment, when that could be an appropriate option,” Frisina said.

Innovative solutions, such as Pedmark, a new FDA-approved injection that mitigates cisplatin-induced hearing loss in children, represent promising steps forward, according to Frisina.

“We want to protect our hearing or treat a hearing loss if hearing damage occurs,” Sanchez said. “Hearing allows us to connect to the world we love. Staying connected through conversations with family and friends, enjoyment of music and entertainment, staying safe and finding pleasure in our vibrant surroundings. Promoting optimal hearing for overall wellness is essential for healthy living.”

According to the American Cancer Society, in addition to cisplatin, other platinum chemotherapy drugs, such as carboplatin, cause damage to the cochlea in the inner ear and lead to hearing loss. The risk of damage is greater with higher doses of chemotherapy.

Source: University of San Francisco

Can a Ketogenic Diet Treat Serious Mental Illnesses?

Photo by Inzmam Khan: https://www.pexels.com/photo/man-in-black-shirt-and-gray-denim-pants-sitting-on-gray-padded-bench-1134204/

Antipsychotic medications for serious mental illness like schizophrenia or bipolar disorder often causes metabolic side effects such as insulin resistance and obesity, leading some patients to discontinue the treatment.

Now, a pilot study led by Stanford Medicine researchers has found that a ketogenic diet not only restores metabolic health in these patients as they continue their medications, but it further improves their psychiatric conditions. The results, published in Psychiatry Research, suggest that a dietary intervention can be a powerful aid in treating mental illness.

“It’s very promising and very encouraging that you can take back control of your illness in some way, aside from the usual standard of care,” said Shebani Sethi, MD, associate professor of psychiatry and behavioral sciences and the first author of the new paper.

The senior author of the paper is Laura Saslow, PhD, associate professor of health behavior and biological sciences at the University of Michigan.

Making the connection

Sethi, who is board certified in obesity and psychiatry, remembers when she first noticed the connection. As a medical student working in an obesity clinic, she saw a patient with treatment-resistant schizophrenia whose auditory hallucinations quieted on a ketogenic diet.

That prompted her to dig into the medical literature. There were only a few, decades-old case reports on using the ketogenic diet to treat schizophrenia, but there was a long track record of success in using ketogenic diets to treat epileptic seizures.

“The ketogenic diet has been proven to be effective for treatment-resistant epileptic seizures by reducing the excitability of neurons in the brain,” Sethi said. “We thought it would be worth exploring this treatment in psychiatric conditions.”

A few years later, Sethi coined the term metabolic psychiatry, a new field that approaches mental health from an energy conversion perspective.

Meat and vegetables

In the four-month pilot trial, Sethi’s team followed 21 adult participants who were diagnosed with schizophrenia or bipolar disorder, taking antipsychotic medications, and had a metabolic abnormality – such as weight gain, insulin resistance, hypertriglyceridaemia, dyslipidaemia or impaired glucose tolerance. The participants were instructed to follow a ketogenic diet, with approximately 10% of the calories from carbohydrates, 30% from protein and 60% from fat. They were not told to count calories.

“The focus of eating is on whole non-processed foods including protein and non-starchy vegetables, and not restricting fats,” said Sethi, who shared keto-friendly meal ideas with the participants. They were also given keto cookbooks and access to a health coach.

The research team tracked how well the participants followed the diet through weekly measures of blood ketone levels, which are produced when the body breaks down fat instead of glucose for energy. By the end of the trial, 14 patients had been fully adherent, six were semi-adherent and only one was non-adherent.

Physical and mental improvement

The participants underwent a variety of psychiatric and metabolic assessments throughout the trial.

Before the trial, 29% of the participants met the criteria for metabolic syndrome, defined as having at least three of five conditions: abdominal obesity, elevated triglycerides, low HDL cholesterol, elevated blood pressure and elevated fasting glucose levels. After four months on a ketogenic diet, none of the participants had metabolic syndrome.

On average, the participants lost 10% of their body weight; reduced their waist circumference by 11% percent; and had lower blood pressure, body mass index, triglycerides, blood sugar levels and insulin resistance.

“We’re seeing huge changes,” Sethi said. “Even if you’re on antipsychotic drugs, we can still reverse the obesity, the metabolic syndrome, the insulin resistance. I think that’s very encouraging for patients.”

The psychiatric benefits were also striking. On average, the participants improved 31% on a psychiatrist rating of mental illness known as the clinical global impressions scale, with three-quarters of the group showing clinically meaningful improvement. Overall, the participants also reported better sleep and greater life satisfaction.

“The participants reported improvements in their energy, sleep, mood and quality of life,” Sethi said. “They feel healthier and more hopeful.”

The researchers were impressed that most of the participants stuck with the diet. “We saw more benefit with the adherent group compared with the semi-adherent group, indicating a potential dose-response relationship,” Sethi said.

Alternative fuel for the brain

There is increasing evidence that psychiatric diseases such as schizophrenia and bipolar disorder stem from metabolic deficits in the brain, which affect the excitability of neurons, Sethi said. The researchers hypothesise that just as a ketogenic diet improves the rest of the body’s metabolism, it also improves the brain’s metabolism.

“Anything that improves metabolic health in general is probably going to improve brain health anyway,” Sethi said. “But the ketogenic diet can provide ketones as an alternative fuel to glucose for a brain with energy dysfunction.”

Likely there are multiple mechanisms at work, she added, and the main purpose of the small pilot trial is to help researchers detect signals that will guide the design of larger, more robust studies.

As a physician, Sethi cares for many patients with both serious mental illness and obesity or metabolic syndrome, but few studies have focused on this undertreated population. She is founder and director of the metabolic psychiatry clinic at Stanford Medicine.

“Many of my patients suffer from both illnesses, so my desire was to see if metabolic interventions could help them,” she said. “They are seeking more help. They are looking to just feel better.”

Source: Stanford Medicine

Clues to Ponatinib’s Deadly Side Effects could Make it a Safer Cancer Drug

Pexels Photo by Freestocksorg

For some leukaemia patients, the only potential chemotherapy option is ponatinib, a drug that also carries a high risk of heart failure. This means that some patients who recover from their cancer will end up dying of heart disease brought on by the cure.

In a new study, researchers from the University of Illinois Chicago and other universities have identified mechanisms that cause ponatinib to harm the heart. They also identified a promising treatment that could reverse this process.

The paper, with senior author Sang Ging Ong, assistant professor of pharmacology and medicine at UIC, is published in Circulation Research. The study is part of a growing field called cardio-oncology that investigates drugs that shrink tumours but can also cause heart problems.

While there are three options of drugs for treating chronic myeloid leukaemia, many patients are resistant to the other two, leaving ponatinib as their only choice.

“These patients have no other options for treatment,” Ong said, despite the concerns about the drug’s side effects.

In fact, ponatinib was pulled from the market for a few months after its introduction in 2012 because of concerns about heart problems.

The researchers were interested in understanding the interaction between ponatinib and the heart cells responsible for contraction.

They discovered that ponatinib damages these cells by activating a process known as the integrated stress response.

The mechanism for this is related to the functioning of a kinase (an enzyme involved in energy transfer) called GCN2.

The researchers found that ponatinib, despite being a kinase inhibitor, actually activates GCN2, which in turn switches on the integrated stress response.

While this response isn’t always a bad thing, normally protecting cells, it can also lead to their death under prolonged stress.

To see if this response was harming the cells, the researchers studied what would happen if they used a small molecule to block the integrated stress response in both cells and in mice during ponatinib treatment.

They found that the treatment helped protect heart cells from the damaging side effects of the drug yet did not diminish ponatinib’s tumour-fighting efficacy.

“It protects the heart but at the same time, it still allows us to kill cancer cells,” Ong said.

More research is needed to know if this protective measure would work well in humans, Ong said.

The mechanisms they identified are important in other cardiac diseases, as well, which could lead to future research on how to protect cells against different conditions.

Source: University of Illinois Chicago

Genetic Risks for ACE Inhibitor-induced Angioedema Identified

Credit: Pixabay CC0

Angioedema is a rare but potentially life-threatening adverse reaction to ACE inhibitors. In a joint analysis of eight European study collectives, researchers for the first time conducted a genome-wide association study (GWAS) with more than 1000 affected individuals, identifying a total of three risk loci in the genome. These included a new locus that had not previously been associated with the risk of ACE inhibitor-induced angioedema. The results of the study have now been published in the Journal of Allergy and Clinical Immunology.

Angiotensin-converting enzyme (ACE) inhibitors are effective antihypertensive drugs. They block the formation of the hormone angiotensin II, which plays a central role in the development of hypertension.

On the other hand, these drugs increase the concentration of the vasoactive signalling substance bradykinin. Among other things, this can lead to acute swelling of the skin or mucous membranes.

Such swellings are generally not life-threatening – but if they affect the tongue, throat or larynx, angioedema can be life-threatening for the patient due to the potential risk of suffocation.

Research to date suggests that susceptibility to such drug-induced angioedema is influenced by hereditary as well as lifestyle and environmental factors. This led researchers from the University Hospital Bonn (UKB), the University of Bonn and the Federal Institute for Drugs and Medical Devices (BfArM) to investigate potential genetic involvement.

“However, the understanding of the underlying biological processes, ie the pathophysiology, and thus the individual risk assessment is still limited. The identification of the responsible genes will provide completely new insights here,” says Prof Markus Nöthen at the University of Bonn.

Which biological processes play a role in ACE inhibitor-induced angioedema?

Based on data from eight European study collectives, the team from Bonn, together with cooperation partners, conducted the first GWAS with more than 1000 patients with ACE inhibitor-induced angioedema.

They identified a total of three loci in the genome that are associated with the risk of ACE inhibitor-induced angioedema.

“While two of the loci have already been described in previous studies, our study was the first to demonstrate a significant association for a new locus on chromosome 20,” explains corresponding author Prof.

Andreas Forstner from the Institute of Human Genetics at the UKB and the University of Bonn and at the Institute of Neuroscience and Medicine (INM-1) at the Research Center Jülich.

“Through further bioinformatic analyses, we were able to identify several candidate genes at the three risk loci indicating that genetic changes in the bradykinin, coagulation and fibrinolysis signalling play a role in the development of this type of angioedema,” adds first author Carina Mathey, doctoral student at the Institute of Human Genetics at the UKB and the University of Bonn.

Source: Universitatsklinikum Bonn

Uniting in a Shared Vision for Improved Patient Safety

Talk to your patients about safe, effective use of medicines

Photo by Cottonbro on Pexels

Approximately one in ten patients experience an adverse drug reaction during their care1. This can lead to serious harm or even death. Sanofi is committed to reducing these numbers by working with healthcare practitioners to create a culture of patient safety.

“Patient safety is a top priority for Sanofi,” says Yusuf Dawood, Multi-Country Safety Head for Sanofi Southern Africa. “We believe that patients should be essential partners in their healthcare journeys, and we are committed to working with healthcare professionals alongside their patients to ensure optimal therapeutic outcomes. We call on all healthcare practitioners to join us in raising awareness of patient safety. By working together, we can advocate for improved communication and reduce patient harm.”

Here are some key tips for healthcare practitioners on how to improve patient safety:

  • Ask patients about their concerns and listen to their feedback. They can provide valuable insights into their own health and well-being and by engaging them, healthcare practitioners can ensure that potential issues are detected as soon as possible and handled appropriately.
  • Provide patients with clear and concise information about their care. Patients need to understand what their diagnosis is, what treatment options are available, and what the benefits and risks of each option are. They also need to know what to expect during and after their treatment, and how to manage any side effects or complications. By giving patients accurate and easy-to-understand information, healthcare practitioners can empower them to make informed choices about their care.
  • Communicate with patients and other members of the healthcare team. Use simple and unambiguous language, avoid jargon and acronyms, and confirm that the patient has understood the information they have been given. Use tools such as checklists, handovers, and feedback loops to ensure that the information they share is complete and accurate.
  • Follow safety protocols and procedures. Healthcare practitioners need to adhere to guidelines, policies, protocols, best practices and standards of care established by professional bodies and regulatory authorities, which have been designed to prevent or minimise harm to patients.
  • Report issues immediately. Report any patient safety issues to the appropriate authorities in the interest of public safety. Report any medication-related patient safety issues to the relevant pharmaceutical companies. This enables companies to continuously monitor the benefit-risk profile of their products and ensure the safe use of medicines.

“Patient safety should be a top priority for healthcare professionals and pharmaceutical companies because the goal of both sectors is to improve and protect the well-being of individuals,” says Dawood. “When safety is compromised, it not only jeopardises the health and trust of patients but also undermines the credibility and integrity of the entire healthcare system. By working with pharmaceutical companies like Sanofi, healthcare professionals can provide real-world feedback on drug efficacy and side effects. This collaborative approach ensures that treatments are both safe and effective.

Join Sanofi in championing patient care. Let’s collaborate, communicate, and make every patient’s journey safer.

Reference
1. Ribeiro, M. et al. (2018) ‘Increase of 10% in the rate of adverse drug reactions for each drug administered in hospitalized patients’, Clinics, 73, pp. 1–6. doi:10.6061/clinics/2018/e185.

A New Model of the Liver Will Help Improve Drug Safety for Women

Improved modelling of male and female livers can help lead to safer drugs

Photo by Danilo Alvesd on Unsplash

Researchers report in PLOS Computational Biology that they developed a powerful new tool to understand how medications affect men and women differently, and that will help lead to safer, more effective drugs in the future.

Women are known to suffer a disproportionate number of liver problems from medications but also usually underrepresented in drug testing. To address this, University of Virginia scientists have developed sophisticated computer simulations of male and female livers and used them to reveal sex-specific differences in how the tissues are affected by drugs.

The new model has already provided unprecedented insights into the biological processes that take place in the liver, the organ responsible for detoxifying the body, in both men and women. But the model also represents a powerful new tool for drug development, helping ensure that new medications will not cause harmful side effects.

“There are incredibly complex networks of genes and proteins that control how cells respond to drugs,” said UVA researcher Jason Papin, PhD, one of the model’s creators. “We knew that a computer model would be required to try to answer these important clinical questions, and we’re hopeful these models will continue to provide insights that can improve healthcare.”

Harmful side effects

Papin, of UVA’s Department of Biomedical Engineering, developed the model in collaboration with Connor Moore, a PhD student, and Christopher Holstege, MD, a UVA emergency medicine physician and director of UVA Health’s Blue Ridge Poison Center. “It is exceedingly important that both men and women receive the appropriate dose of recommended medications,” Holstege noted. “Drug therapy is complex and toxicity can occur with subtle changes in dose for specific individuals.”

Before developing their model, the researchers first looked at the federal Food and Drug Administration’s Adverse Event Reporting System to evaluate the frequency of reported liver problems in men and women. The scientists found that women consistently reported liver-related adverse events more often than did men.

The researchers then sought to explain why this might be the case. To do that, they developed computer models of the male and female livers that integrated vast amounts of data on gene activity and metabolic processes within cells. These cutting-edge liver simulations provided important insights into how drugs (xenobiotics) affect the tissue differently in men and women and allowed the researchers to understand why.

They found that xenobiotic metabolism was more active in untreated males, while pentose and glucoronate interconversions were female-biased, suggesting a difference in pretreatment gene expression, which may result in different initial responses of phase I and phase II metabolism to hepatotoxic drugs. They also observed sex-bias in bile acid biosynthesis, which in combination with xenobiotic metabolism, this result may suggest differences in bacterial deconjugation driven by sex differences in the gut microbiome. Differences were also found in several essential metabolic pathways, such as glycolysis/gluconeogenesis, nucleotide metabolism, and lipid metabolism with supporting evidence in human or rat hepatocytes.

“We were surprised how many differences we found, especially in very diverse biochemical pathways,” said Moore, a biomedical engineering student in Papin’s lab. “We hope our results emphasise how important it is for future scientists to consider how both men and women are affected by their research.”

The work has already identified a key series of cellular processes that explain sex differences in liver damage, and the scientists are calling for more investigation of it to better understand “hepatotoxicity” — liver toxicity. Ultimately, they hope their model will prove widely useful in developing safer drugs.

“We’re hopeful these approaches will be help address many other questions where men and women have differences in drug responses or disease processes,” Papin said. “Our ability to build predictive computer models of complex systems in biology, like those in this study, is truly opening all kinds of new avenues for tackling some of the most challenging biomedical problems.”

Source: University of Virginia Health System

Researchers Quantify Risk Factors for Oral Diclofenac

Safety concerns related to the widely used analgesic diclofenac may be tied to a little-studied drug-metabolising enzyme which can vary as much as 3000 times across individuals, according to new research published in the journal Clinical Pharmacology & Therapeutics.

The findings could be used to develop ways to identify those at risk of serious side effects from the drug. They may help determine safer dosing standards for specific populations, including women, young children and people of certain ethnicities.

Used to treat arthritis-associated pain and inflammation, diclofenac was available over-the-counter in the US until 2013, when the Food and Drug Administration restricted it to prescription-only use following reports of the drug causing heart damage. More than 10 million prescriptions per year are written for it in the US. It is also one of the most widely used non-steroidal anti-inflammatory drugs worldwide, and is still over-the-counter in many countries. 

“Most patients who are using diclofenac have arthritis, and many of them are at risk of heart disease,” senior author Bhagwat Prasad, an associate professor at Washington State University. “So there is a concern that taking diclofenac may be putting them at even greater risk of cardiovascular events such as heart attack and stroke.”

Previous findings by the WSU team had found a high degree of variability in the expression of UGT2B17, an enzyme that is a known player in diclofenac metabolism. They found that the enzyme is present at much lower levels in women than in men, which could explain the increased risk of heart damage seen in women taking diclofenac. The enzyme was also mostly absent in children under age 9 and discovered large ethnicity-based differences in the number of people who lack the gene for the enzyme altogether, which ranges from around 20% of Caucasians up to around 90% of Japanese people.

In this new study, the WSU researchers used human liver and intestinal samples along with computer modelling to quantify the degree to which this enzyme contributes to diclofenac metabolism relative to other related enzymes. They found it to be a major player, supporting the idea that low levels of the UGT2B17 enzyme may be the cause of heart damage tied to diclofenac use.

“No one knew why this heart toxicity is happening in some individuals,” said first author Deepak Ahire, a graduate student in the WSU College of Pharmacy and Pharmaceutical Sciences. “Our study showed, for the first time, that UGT2B17 is important in diclofenac metabolism and suggests that differences in UGT2B17 expression are what makes people’s response to diclofenac so variable, leading to toxicity in some whereas for others the drug simply does not work.”

Ahire said that their study found that this enzyme metabolises diclofenac mainly in the intestine, unlike other related enzymes that are active mostly in the liver. Thus the observed effects are limited to diclofenac tablets taken by mouth, which provides for the quickest absorption and pain relief.

The findings suggest genetic testing could help healthcare providers evaluate safety risks before prescribing diclofenac. Prasad also noted that drug regulatory authorities in countries where diclofenac is still available over the counter should consider doing efficacy testing to determine the optimal dose of the drug for their local market.

The WSU researchers are currently in the process of confirming their findings in a pilot clinical trial. Their next step would be to pursue collaborations with large hospitals to study the connection between diclofenac and heart damage in patients’ electronic medical records.

Source: Washington State University

1 in 5 Patients at High Cardiovascular Risk Refuse Statins, Especially Women

Photo by Priscilla du Preez on Unsplash

Heart disease is the leading cause of death worldwide, and statins are a vital medication against it – but they are notoriously unpopular, leading to poor adherence. Investigators from Brigham and Women’s Hospital conducted the first population-based study on patients’ nonacceptance of statin therapy recommendations, and published their results in JAMA Network Open.

The study found that in patients at high risk of developing cardiovascular disease, over 20% refused to take statin medications. They were particularly surprised to see that women were about 20% more likely than men to refuse statin therapy when it was first suggested by their physician, and 50% more likely than men to never accept the recommendation. The study also showed that all patients who refused statin therapy developed higher LDL cholesterol levels, likely increasing their risk even further.

“Our study highlights the alarming number of patients who refuse statins and signals that physicians must have discussions with patients about why,” says Alex Turchin, MD, MS, an associate professor at Harvard Medical School and director of quality in the Brigham’s Division of Endocrinology, Diabetes, and Hypertension. “We need to better understand what our patients’ preferences are and to be able to provide more patient-centered care.”

After Turchin began noticing that many of his patients with high cholesterol, including those with diabetes, were opting not to take safe and beneficial medications like statins that can lower cholesterol and bring down the risk of heart attack and stroke, he developed a system to more closely study the phenomenon by analysing the text of provider notes.

The study focused on high-risk patients who either had coronary artery or vascular disease, diabetes, very high cholesterol, or had suffered a stroke. All were recommended statin medications by their physicians to reduce their risk of heart attack and stroke and reduce cholesterol levels. The retrospective study included more than 24 000 patients who were seen at Mass General Brigham between January 1, 2000, and December 31, 2018.

“Even in this higher-risk patient population, so many people did not accept statin therapy,” Turchin said. The study found that while about two-thirds of the patients who were being recommended statin therapy eventually tried it, about one-third never did. And it took three times as long for people in the study who initially said no to taking statin medications to reduce their LDL cholesterol levels to less than 100, compared to people who initially said yes.

The study’s biggest surprise, however, was the much higher rate of refusal by women than men. Turchin and his colleagues wonder if this might be due in part to a false misconception that heart disease impacts men more than women, and plan to further research the reasons underlying these results.

“Ultimately, we need to talk to our patients and find out in more detail why they would prefer not to take statins,” Turchin says. He is currently looking at the impacts of nonacceptance of statin therapy on outcomes that matter to most to patients including heart attacks, strokes, and death. “I think people underestimate how much of a difference modern medicine has made in extending people’s lives, and their quality of life, and medications can play a big role in that.”

Source: Brigham and Women’s Hospital