Compensatory mutations enabled vancomycin resistance to persist through several generations
Staphylococcus aureus has the potential to develop durable vancomycin resistance, according to a study published August 28, 2024, in the open-access journal PLOS Pathogens by Samuel Blechman and Erik Wright from the University of Pittsburgh, USA.
Despite decades of widespread treatment with the antibiotic vancomycin, vancomycin resistance among the bacterium S. aureus is extremely uncommon – only 16 such cases have reported in the US to date. Vancomycin resistance mutations enable bacteria to grow in the presence of vancomycin, but they do so at a cost. Vancomycin-resistant S. aureus (VRSA) strains grow more slowly and will often lose their resistance mutations if vancomycin is not present. The reason behind vancomycin’s durability and the potential for VRSA strains to further adapt have not been adequately explored.
In this study, researchers took four VRSA strains and grew them in the presence and absence of vancomycin to see how the strains would evolve. They found that strains grown in the presence of vancomycin developed additional mutations in the ddl gene, which has previously been associated with vancomycin dependence. These mutations enabled VRSA strains to grow faster when vancomycin was present. Unlike the original strains, which quickly lost vancomycin resistance, the evolved strains maintained resistance through several generations, even when vancomycin was no longer present.
The study shows that durability of vancomycin susceptibility to date should not be taken for granted. The trade-off that often comes with vancomycin resistance can be overcome if the bacteria is allowed to grow in the presence of vancomycin. As antibiotic resistance continues to grow as a public health threat, studies like this underscores the importance of developing new antibiotics.
The authors add: “The superbug MRSA has been held off by the antibiotic vancomycin for decades. A new study shows we will not be able to count on vancomycin forever.”
A new study has tricked bacteria into sending death signals to stop the growth of biofilms that lead to deadly infections. The discovery by Washington State University researchers could someday be harnessed as an alternative to antibiotics for treating difficult infections.
Reporting in the journal,Biofilm, the researchers used the messengers, which they named death extracellular vesicles (D-EVs), to reduce growth of the bacterial communities by up to 99.99% in laboratory experiments.
“Adding the death extracellular vesicles to the bacterial environment, we are kind of cheating the bacteria cells,” said Mawra Gamal Saad, first author on the paper and a graduate student in WSU’s Gene and Linda Voiland School of Chemical Engineering and Bioengineering.
“The cells don’t know which type of EVs they are, but they take them up because they are used to taking them from their environment, and with that, the physiological signals inside the cells change from growth to death.”
Bacterial resistance is a growing problem around the world. In the US, at least 2 million infections and 23 000 deaths are attributable to antibiotic-resistant bacteria each year, according to the U.S. Centers for Disease Control.
When antibiotics are used to treat a bacterial infection, some of the bacteria can hide within their tough-to-penetrate biofilm. These subpopulations of resistor cells can survive treatment and are able to grow and multiply, resulting in chronic infections.
“They are resistant because they have a very advanced and well-organised adaptive system,” said Saad.
“Once there is a change in the environment, they can adapt their intracellular pathways very quickly and change it to resist the antibiotics.”
In their new study, the researchers discovered that the extracellular vesicles are key to managing the growth of the protective biofilm.
The vesicles, tiny bubbles from 30 to 50nm or about 2000 times smaller than a strand of hair, shuttle molecules from cells, entering and then re-programming neighbouring cells and acting as a cell-to-cell communications system.
As part of this study, the researchers extracted the vesicles from one type of bacteria that causes pneumonia and other serious infections.
They determined that the bacteria initially secrete vesicles, called growth EVs, with instructions to grow its biofilm, and then later, depending on available nutrients, oxygen availability and other factors, send EVs with new instructions to stop growing the biofilm.
The researchers were able to harness the vesicles with the instructions to stop growth and use them to fool the bacteria to kill off the biofilm at all stages of its growth.
Even when the biofilms were healthy and rapidly growing, they followed the new instructions from the death EVs and died. The death EVs can easily penetrate the biofilm because they are natural products secreted by the bacteria, and they have the same cell wall structure, so the cells don’t recognise them as a foreign enemy.
“By cheating the bacteria with these death EVs, we can control their behaviour without giving them the chance to develop resistance,” said Saad.
“The behavior of the biofilm just changed from growth to death.”
WSU Professor and corresponding author Wen-Ji Dong, who has been studying the vesicles for several years initially thought that all of the bacterial-secreted vesicles would promote cell growth.
The researchers were surprised when they found that older biofilms provided instructions on shutting themselves down.
“So now we’re paying attention to the extracellular vesicles secreted by older biofilms because they have therapeutic potential,” he said.
A common culprit of skin and respiratory infections, Staphylococcus aureus is highly unpredictable, with the bacteria mostly harmlessly present in the skin of 20–30% of people. However, these bacteria can occasionally cause infections that lead to deadly complications, such as pneumonia, deep skin infections, and sepsis. This was a totally unpredictable outcome – until now.
Now, a new study published in Science identifies a mutated gene common to multiple patients who suffer life-threatening infections and suggests that people living with a genetic condition known as 5p- or Cri-du-chat syndrome may be at similar risk.
“We have characterised severe Staphylococcus aureus infection at the genetic, cellular, immunological, and clinical levels,” said András Spaan, the study’s first author. “By integrating these levels, we have established causality and provided clues for future interventions.”
A first for cell intrinsic immunity
To find out why S. aureus causes disease in some people but not others, scientists examined the protein-coding genomes of more than 100 patients who had suffered from unexplained severe staph infections.
The common genetic thread linking some of these disparate patients were mutations of a gene called OTULIN, which is perched along the short arm of chromosome 5 and codes for an enzyme involved in regulating inflammation. These individuals were not entirely bereft of OTULIN –only one of their two copies of the gene was mutated – but that deficiency appeared to be all it took to render them vulnerable to infections that would scarcely harm other people.
The scientists expected to find that OTULIN deficiency somehow cripples white blood cells or otherwise prevents the immune system from snuffing out S. aureus. But further investigation revealed that these mutations indirectly cause an unrelated protein to aggregate on the surfaces of skin and lung cells, gumming up the tools that those cells use to defend themselves from a toxin produced by S. aureus. This mechanism of defense is known as cell intrinsic immunity.
This finding was particularly surprising because, until then, specific defects in cell intrinsic immunity had only been linked to a predisposition to some viral infections, from COVID to herpes to encephalitis. It had never been shown to play a role in bacterial disease. “This is the first known instance of cell intrinsic immunodeficiency predisposing patients to bacterial infection,” Spaan says.
A larger role for OTULIN
While the individuals whom Spaan and colleagues studied were only missing one copy of OTULIN, people born without either functional copy of this gene face a bevy of early-onset inflammatory diseases, which often prove fatal in the first year of life.
This observation led Spaan to conclude that one functional copy of OTULIN is enough to prevent inflammatory disease, but insufficient to protect against life-threatening staph infections—a genetic mechanism known as haploinsufficiency. “The genetic mechanism was important to pin down,” Spaan says. “People with two functional copies of the gene appear to be healthy, those with no functional copies have autoinflammatory disease, and those with one functional copy are susceptible to severe staph infections.”
Given that general rule, the researchers hypothesized that any population missing only one copy of OTULIN would be similarly predisposed to severe infections. So they then examined a group of volunteers with 5p- syndrome, the most common chromosomal deletion disorder in humans characterized by developmental delays, intellectual disabilities and, in infants, a high-pitched cry. Most 5p- syndrome patients are missing the entire short arm of chromosome 5 and therefore invariably go about their lives with only one functional copy of OTULIN.
Indeed, upon examining six 5p- syndrome patients, the team found that one third were susceptible to lung infections. “We were able to demonstrate that this susceptibility is driven by the fact that they had only one functional copy of OTULIN,” Spaan says. “In many ways, these patients looked genetically similar to the patients we had identified with severe staph infections.”
“Both clinically, and on the cellular level, they could almost be said to have the same disease.”
The findings do not imply that everyone with OTULIN haploinsufficiency or 5p- syndrome will contract severe infections. In fact, the initial results of the study suggested that only 30 percent of individuals with these mutations develop severe disease. Why OTULIN haploinsufficiency appears to cause disease in some patients but not others—a common phenomenon that genetics researchers call “incomplete penetrance”—will be the subject of follow-up studies.
“Many genetic disorders act in this way, but it remains puzzling,” Spaan says. “Why are some people with these mutations perfectly healthy, while others get super ill and may even die?”
One potential answer has already surfaced. Spaan and colleagues found that individuals with OTULIN mutations but no sign of severe disease had high levels of antibodies that neutralise the toxin produced by S. aureus, perhaps due to prior exposure to the common skin bacteria. Individuals with severe disease, on the other hand, had precious few antibodies.
Further investigation into genetic predisposition to diseases, particularly ones as stubborn as staphylococcal infections, may help the development of future treatments. “Studies on these disorders can act as a compass,” Spaan said, “Our research clarifies the interactions between hosts and pathogens, revealing scientific insights into pathogenesis and immunity.”
Researchers have uncovered a novel trick employed by the bacterium Staphylococcus aureus — MRSA uses toxins to ‘fight dirty’ and stifle the immune response. This finding is a step towards one day producing a vaccine against MRSA.
Every year, there are some 700 000 deaths due to the emerging global threat of antimicrobial resistance (AMR). Turning the tables against AMR requires immediate action, and the development of novel vaccines to prevent such infections in the first place, are an attractive and potentially very effective option.
Staphylococcus aureus is the causative agent of the infamous MRSA ‘superbug’, one of the chief concerns of AMR. Immunologists from Trinity College Dublin, working with scientists at GSK, discovered the deadly bacteria’s new trick to foil the immune system. They found that the bacterium interferes with the host immune response by causing toxic effects on white blood cells, preventing them from carrying out their infection-fighting jobs.
The study also showed that the toxicity could be lessened following vaccination with a mutated version of a protein specifically engineered to throw a spanner in the MRSA works. This could one day lead to a vaccine for humans.
Rachel McLoughlin, Professor in Immunology in Trinity’s School of Biochemistry and Immunology and the Trinity Biomedical Sciences Institute (TBSI), said: “As a society we are witnessing first-hand the powerful impact that vaccination can have on curbing the spread of infection. However, in the backdrop of the COVID epidemic we must not lose sight of the fact that we are also waging war on a more subtle epidemic of antimicrobial resistant infection, which is potentially equally deadly.
“In this study we have identified a mechanism by which a protein made by the bacterium – known as Staphylococcal Protein A (SpA) – attacks and rapidly kills white blood cells. This protein has been widely studied for its immune evasion capacity and has a well-documented role in rendering antibodies raised against the bacterium non-functional.
“Here we uncover a previously undocumented strategy by which SpA forms immune complexes through its interaction with host antibodies, that in turn exert toxic effects on multiple white blood cell types. This discovery highlights how important it will be for effective vaccines to be capable of disarming the effects of protein A.”
Dr Fabio Bagnoli, Director, Research & Development Project Leader, GSK, said: “Our collaboration with Trinity College Dublin and in particular with Professor Rachel McLoughlin, a worldwide recognised expert on staphylococcal immunology, is critical for increasing our knowledge on protective mechanisms against S. aureus.”
The study documents the latest discovery made by this group at Trinity under an ongoing research agreement with GSK Vaccines (Siena, Italy). Overall, this collaboration aims to increase understanding of the immunology of Staphylococcus aureus infection to advance development of next-generation vaccines to prevent MRSA infections.
Journal information: Fox, P. G., et al. (2021) Staphylococcal Protein A Induces Leukocyte Necrosis by Complexing with Human Immunoglobulins. Scientific Reports. doi.org/10.1128/mBio.00899-21.