Tag: new compounds

New Antibody Treatment for Crimean-Congo Haemorrhagic Fever

Deer tick (Ixodes scapularis). Photo by Erik Karits on Unsplash

Working with international colleagues, US Army scientists have developed and tested an antibody-based therapy to treat Crimean-Congo haemorrhagic fever virus (CCHFV). 

The deadly virus is carried by ticks and has a high mortality rate, killing up to 60% of those infected. Their findings are published in the journal Cell.

The researchers characterised the human immune response to natural CCHFV infection by using blood samples donated by disease survivors. They were able to identify several potent neutralising antibodies that target the viral glycoprotein–a viral component which has a key role in disease development. A number of of these antibodies, administered individually or in combination, successfully protected mice from CCHFV when exposed to the virus after antibody administration.

In order to treat mice that had already been infected with the virus, the team created ‘bispecific’ antibodies that combined potency with the ability to bind to two different sites on the CCHFV glycoprotein. One of these bispecific antibodies, called DVD-121-801, overcame CCHFV infection in mice with just a single dose administered 24 hours after challenge with live virus.

DVD-121-801 as a potential therapeutic for human patients, according to co-first author Andrew H. Herbert, Ph.D., of the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID).

CCHFV is the most prevalent tick-borne virus that causes human disease, and is endemic in countries across Europe, Asia, and Africa. CCHF occurs most frequently among agricultural workers following the bite of an infected tick, and to a lesser extent among slaughterhouse workers exposed to the blood and tissues of infected livestock and medical personnel through contact with the body fluids of infected patients. In spite of its high lethality and widespread distribution, there are no vaccines or specific treatments for it. It has been designated a priority pathogen by the World Health Organization.

Study co-first author Andrew H Herbert, PhD, US Army Medical Research Institute of Infectious Diseases, said: “Rodent models of CCHFV infection are useful in testing and down-selecting neutralising antibodies. However, to advance a lead candidate for therapeutic use, it will be necessary to conduct studies in larger animal models that more faithfully recapitulate human disease.”

Source: Medical Xpress

Journal information: J. Maximilian Fels et al, Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever, Cell (2021). DOI: 10.1016/j.cell.2021.05.001

Averting Heart Failure by Shutting Down a Heart Protein

Photo from Olivier Collett on Unsplash
Photo from Olivier Collett on Unsplash

Shutting down a protein found in cardiac muscle could be a new mechanism to treat post-heart attack heart failure, according to research led by the University of Cambridge.

New drugs are needed to improve the heart’s pumping ability after damage from a heart attack. Drugs that strengthen the contraction of failing heart muscle have been deemed unsafe, leaving a gap in the heart attack and heart failure armamentarium.

Researchers now believe that they might have identified a new drug target—a protein called MARK4.

In research funded by the British Heart Foundation (BHF), Cambridge scientists found levels of MARK4 were elevated in mouse hearts after a heart attack. When they compared mice with and without MARK4 in the heart, they found hearts lacking the protein pumped blood 57% more efficiently. This protective effect was seen 24 hours after a heart attack and persisted over the entire follow-up period of four weeks.

The team was first in identifying that MARK4 fine-tunes a structural network within the heart muscle cell—called the microtubule network—that attaches to the machinery governing heart muscle cells contraction and relaxation. When MARK4 levels were increased after a heart attack, microtubules were tightly anchored onto the contractile machinery in the heart, increasing resistance and hindering normal function. When MARK4 levels were reduced, microtubules were loosely anchored, making contraction and relaxation easier.

Following a heart attack the speed of contraction in MARK4-lacking muscle cells increased by 42 percent and the speed of relaxation increased by 47 percent, compared to muscle cells from mice that had the MARK4 protein. They were also almost on par with healthy heart muscle performance, attesting to the power of reducing MARK4.

Based on these findings, the researchers suggested that drugs to switch off MARK4 could be a new way to improve recovery and help the heart to pump blood more efficiently in people with failing hearts.

Dr Xuan Li, BHF Intermediate Research Fellow at University of Cambridge BHF Centre of Research Excellence, said: “After years of research we’ve revealed an entirely new and promising way that could help the recovery of failing hearts.

“It’s early days, and we now need to test the longer-term effects of switching off MARK4. But if drugs to do that prove successful, the life-changing benefits could be seen in people with other types of heart disease as well as those who’ve had a heart attack and developed heart failure.”

Professor Metin Avkiran, Associate Medical Director at the British Heart Foundation, said: “Heart attacks are a major cause of disability worldwide—people who’ve had a major heart attack are at much greater risk of developing chronic heart failure. There are around 920 000 people living with heart failure in the UK, and we desperately need drugs to drastically improve the heart’s function in these patients.

“These findings are a positive step forward. Further research is needed to refine and test drugs that can target MARK4 before we’ll see them given to people who’ve had a heart attack and develop heart failure.”

Source: University of Cambridge

New Antimalarial Compound Traps Parasites in Cells

Photo by Егор Камелев on Unsplash

To combat the growing resistance of malaria to current treatments, researchers at the Francis Crick Institute and the Latvian Institute of Organic Synthesis have designed a new antimalarial compound which interrupts the malaria parasite life cycle by trapping them in their host cells.

While drugs and mosquito control have reduced levels of malaria over recent decades, with malaria being effectively wiped out in North America by the 1950s, the parasite still kills over 400 000 people every year, 90% of whom live in sub-Saharan Africa. It has now developed resistance to many existing antimalarial drugs, meaning new treatments that work in different ways are urgently needed.

If we can effectively trap malaria in the cell by blocking the parasite’s exit route, we could stop the disease in its tracks and halt its devastating cycle of invading cells.
Mike Blackman

The researchers developed an array of compounds designed to prevent the parasites bursting out of blood cells, a vital replication step. One compound in particular was found to be very effective in human cell tests.

“Malaria parasites invade red blood cells where they replicate many times, before bursting out into the bloodstream to repeat the process. It’s this cycle and build-up of infected red blood cells which causes the symptoms and sometimes fatal effects of the disease,” says Mike Blackman, lead author and group leader of the Malaria Biochemistry Laboratory at the Crick.  

“If we can effectively trap malaria in the cell by blocking the parasite’s exit route, we could stop the disease in its tracks and halt its devastating cycle of invading cells.”

Blocking the parasite’s emergence

The compound works by blocking an enzyme called SUB1, needed for them to burst out of cells. Current antimalarials kill the parasite within the cell, so the researchers hope this alternative drug action will overcome the resistance the parasite has acquired.

The compound can penetrate both the cell wall and the compartment within where the parasites reside.

The researchers are further refining the compound making it smaller and more potent. Further tests are needed before it can be trialled in humans.

Study author Chrislaine Withers-Martinez and researcher in the Malaria Biochemistry Laboratory, said: “Many existing antimalarial drugs are plant derived and while they’re incredibly effective, we don’t know the precise mechanisms behind how they work. Our decades of research have helped us identify and understand pathways crucial to the malaria life cycle allowing us to rationally design new drug compounds based on the structure and mechanism of critical enzymes like SUB1.

“This approach, which has already been highly successful at finding new treatments for diseases including HIV and Hepatitis C, could be key to sustained and effective malaria control for many years to come.” 

Source: Francis Crick Institute