Tag: mutations

Schizophrenia Might Stem From Genetic Mutations In Utero

Photo by Alex Green on Pexels

As an adult-onset psychiatric disorder, schizophrenia is thought to be triggered by some combination of environmental factors and genetics, although the exact cause remains unclear. In a study published in the journal Cell Genomics, researchers find a correlation between schizophrenia and somatic copy-number variants, a type of mutation that occurs early in development but after genetic material is inherited. This study is one of the first to rigorously describe the relationship between somatic genetic mutations and schizophrenia risk.

“We originally thought of genetics as the study of inheritance. But now we know that genetic mechanisms go way beyond that,” says senior author Chris Walsh, an investigator at the Howard Hughes Medical Institute and chief of genetics and genomics at Boston Children’s Hospital. “We’re looking at mutations that are not inherited from the parents.”

The researchers analysed genotype-marker data from over 20,000 blood samples of people with or without schizophrenia from the Psychiatric Genomics Consortium. They ultimately identified two genes, NRXN1 and ABCB11, that correlated with schizophrenia cases when disrupted in uteroNRXN1, a gene that helps transmit signals throughout the brain, has been associated with schizophrenia before. However, this is the first study to associate somatic, not inherited, NRXN1 mutations with schizophrenia.

Unlike inherited mutations, which are present in all the cells of the body, somatic mutations are only present in a fraction of cells based on when and where a mutation occurred. If a mutation occurs early in development, it is expected that the variant is present throughout the body in a mosaic pattern. On the basis of this principle, researchers can identify somatic mutations that occurred early in development and are present not only in the brain but also in a fraction of cells in the blood.

“If a mutation occurs after fertilisation when there are only two cells, the mutation will be present in half of the cells of the body,” says Walsh. “If it occurs in one of the first four cells, it will be present in about a quarter of the cells of the body, and so on.”

The second gene the researchers identified, ABCB11, is most known to encode a liver protein. “That one came out of nowhere for us,” says Eduardo Maury, a student in Harvard-MIT’s MD-PhD program. “There have been some studies associating mutations in this gene with treatment-resistant schizophrenia, but it hasn’t been strongly implicated in schizophrenia per se.”

When the team investigated further, they found that ABCB11 is also expressed in very specific subsets of neurons that carry dopamine from the brainstem to the cerebral cortex. Most schizophrenia drugs are thought to act on these cells to decrease an individual’s dopamine levels, so this might explain why the gene is associated with treatment resistance.

Next, the team is working towards identifying other acquired mutations that might be associated with schizophrenia. Given that the study analysed blood samples, it will be important to look at more brain-specific mutations that might have been too subtle or recent in a patient’s life for this analysis to detect. In addition, somatic deletions or duplications might be an under-investigated risk factor associated with other disorders.

“With this study, we show that it is possible to find somatic variants in a psychiatric disorder that develops in adulthood,” says Maury. “This opens up questions about what other disorders might be regulated by these kinds of mutations.”

Source: Cell Press via ScienceDaily

The Molecular Secrets of the ‘Feel No Pain’ Gene

The biology underpinning a rare genetic mutation that allows its carrier to feel almost no pain, heal faster and had reduced anxiety and fear, has been uncovered in a new study published in Brain.

Though it may sound like the stuff of superheroes, the carrier of the genetic mutation is an ordinary Scottish woman named Jo Cameron, who was first referred to pain geneticists at University College London in 2013, after her doctor noticed that she experienced no pain after major surgeries on her hip and hand. In 2019, they identified a new gene that they appropriately named FAAH-OUT, which had a rare genetic mutation. In combination with another, more common mutation in FAAH, it was found to be the cause of Jo’s unique characteristics.

The new research describes how the mutation in FAAH-OUT ‘turns down’ FAAH gene expression, as well as the knock-on effects on other molecular pathways linked to wound healing and mood. It is hoped the findings will lead to new drug targets and open up new avenues of research in these areas.

The area of the genome containing FAAH-OUT had previously been assumed to be ‘junk’ DNA that had no function, but it was found to mediate the expression of FAAH, a gene that is part of the endocannabinoid system and that is well-known for its involvement in pain, mood and memory.

In this study, the team from UCL sought to understand how FAAH-OUT works at a molecular level, the first step towards being able to take advantage of this unique biology for applications like drug discovery.

This included a range of approaches, such as CRISPR-Cas9 experiments on cell lines to mimic the effect of the mutation on other genes, as well as analysing the expression of genes to see which were active in molecular pathways involved with pain, mood and healing.

The team observed that FAAH-OUT regulates the expression of FAAH. When it is significantly turned down as a result of the mutation carried by Jo Cameron, FAAHenzyme activity levels are significantly reduced.

Dr Andrei Okorokov (UCL Medicine), a senior author of the study, said: “The FAAH-OUT gene is just one small corner of a vast continent, which this study has begun to map. As well as the molecular basis for painlessness, these explorations have identified molecular pathways affecting wound healing and mood, all influenced by the FAAH-OUT mutation. As scientists it is our duty to explore and I think these findings will have important implications for areas of research such as wound healing, depression and more.”

The authors looked at fibroblasts taken from patients to study the effects of the FAAH-OUT-FAAH axis on other molecular pathways. While the mutations that Jo Cameron carries turn down FAAH, they also found a further 797 genes that were turned up and 348 that were turned down. This included alterations to the WNT pathway that is associated with wound healing, with increased activity in the WNT16 gene that has been previously linked to bone regeneration.

Two other key genes that were altered were BDNF, which has previously been linked to mood regulation and ACKR3, which helps to regulate opioid levels. These gene changes may contribute to Jo Cameron’s low anxiety, fear and painlessness.

Senior study author Professor James Cox said: “The initial discovery of the genetic root of Jo Cameron’s unique phenotype was a eureka moment and hugely exciting, but these current findings are where things really start to get interesting. By understanding precisely what is happening at a molecular level, we can start to understand the biology involved and that opens up possibilities for drug discovery that could one day have far-reaching positive impacts for patients.”

Source: University College London

Human Cells Resist Mutations Without Ageing Impacts

Source: Pixabay

Researchers have found that human cells and tissues cells tolerate many more mutations than previously thought, without impacting their function or showing the features associated with ageing.

To understand the impact of defective DNA replication on cancer risk and features associated with ageing, researchers compared DNA taken from individuals with inherited mutations in genes involved in DNA replication with DNA from individuals with normal versions of these genes. The results, published in Nature Genetics,  suggest that build-up of mutations in normal cells is unlikely to be the only factor in the development of age-related disease, adding to the ongoing debate about the causes of ageing.

One model of ageing suggests that accumulation of mutations in the DNA of healthy cells results in the changes that we see as the body grows older. This model is based on the observation that mutations accumulate in normal cells throughout life, theorising that the older people having more mutations compared to younger people results in impaired function of genes and disturbs cell function, ultimately leading to diseases of old age and the visible features typically associated with ageing.

However, this new research shows that human cells and tissues can function apparently normally with many more mutations than are usually present, suggesting that ageing may not solely be due to buildup of such mutations.

DNA replication is required to duplicate the DNA in a cell ready for cell division. It involves creating an entire error-free copy of the human genome from the existing strand, and is undertaken with very high accuracy in normal healthy cells by proteins called DNA polymerases. When the DNA polymerases have a mutation, causing them to be faulty, it leads to more DNA errors, or small mutations, accumulating with each and every cell replication.

In this study, researchers applied new techniques to sequence the DNA of normal cells and tissues from patients who have inherited mutated versions of the DNA polymerase genes, POLE and POLD1.

By comparing tissue samples with unaffected individuals, they found that normal tissues from those who had a faulty DNA polymerase had elevated mutation rates. These study participants did not, however, show features of early onset ageing or age-related diseases despite having accumulated numbers of mutations that would have made them hundreds of years old in terms of their ‘mutational age’. Therefore, other than an increased risk of certain cancers, the research shows that cells can accumulate many mutations and not show features associated with ageing, challenging the current model.

Further research is therefore needed to understand the biological processes underlying ageing.

Source: Wellcome Trust Sanger Institute