Tag: intermittent fasting

Time to Debunk Four Persistent Myths about Intermittent Fasting

Photo by Malvestida on Unsplash

In a new article published in Nature Reviews Endocrinology, researchers at the University of Illinois Chicago debunk four common myths about the safety of intermittent fasting. 

Intermittent fasting as a weight loss method has grown increasingly popular, with a large body of research demonstrating its safety. Despite this, several myths about fasting have spread among clinicians, journalists and the general public: that fasting can lead to a poor diet or loss of lean muscle mass, cause eating disorders, or decrease sex hormones. 

In a new commentary, UIC researchers debunk each of these. They base their conclusions on clinical studies, some of which they conducted and some done by others. 

“I’ve been studying intermittent fasting for 20 years, and I’m constantly asked if the diets are safe,” said lead author Krista Varady, professor of kinesiology and nutrition at UIC. “There is a lot of misinformation out there. However, those ideas are not based on science; they’re just based on personal opinion.”  

There are two main types of intermittent fasting. With alternate-day eating, people alternate between days of eating a very small number of calories and days of eating what they want. With time-restricted eating, people eat what they want during a four- to 10-hour window each day, then don’t eat during the rest of the day. The researchers conclude both types are safe despite the popular myths.

Their conclusions: 

Intermittent fasting does not lead to a poor diet: The researchers point to studies showing the intake of sugar, saturated fat, cholesterol, fibre, sodium and caffeine do not change during fasting compared with before a fast. And the percentage of energy consumed in carbohydrates, protein and fat doesn’t change, either.  

Intermittent fasting does not cause eating disorders: None of the studies show that fasting caused participants to develop an eating disorder. However, all the studies screened out participants who had a history of eating disorders, and the researchers say that those with a history of eating disorders should not try intermittent fasting. They also urge paediatricians to be cautious when monitoring obese adolescents if they start fasting, because this group has a high risk of developing eating disorders. 

Intermittent fasting does not cause excessive loss of lean muscle mass: The studies show that people lose the same amount of lean muscle mass whether they’re losing weight by fasting or with a different diet. In both cases, resistance training and increased protein intake can counteract the loss of lean muscle. 

Intermittent fasting does not affect sex hormones: Despite concerns about fertility and libido, neither oestrogen, testosterone nor other related hormones are affected by fasting, the researchers said. 

Source: University of Illinois Chicago

Intermittent Fasting Protects against Liver Inflammation and Liver Cancer

Photo by jamie he

Fatty liver disease often leads to chronic liver inflammation and can even result in liver cancer. Scientists from the German Cancer Research Center (DKFZ) and the University of Tübingen have now shown in mice* that intermittent fasting on a five days on, two days off schedule can halt this development.

In mice with pre-existing liver inflammation, this fasting regime reduces the development of liver cancer . The researchers also identified two proteins in liver cells that are jointly responsible for the protective effect of fasting. An existing drug can partially mimic this effect.

The most common chronic liver condition is non-alcoholic fatty liver disease. If left untreated, it can lead to liver inflammation (metabolic dysfunction-associated steatohepatitis, MASH), liver cirrhosis and even liver cancer. Fatty liver disease is largely considered to be a direct consequence of obesity.

“The vicious circle of an unhealthy diet, obesity, liver inflammation and liver cancer is associated with major restrictions and suffering for those affected and also represents a considerable burden on healthcare systems,” says Mathias Heikenwälder, DKFZ and University of Tübingen. “We have therefore investigated whether simple dietary changes can specifically interrupt this fatal process.”

Intermittent fasting has already been shown in several studies to be an effective means of reducing weight and alleviating certain metabolic disorders. Heikenwälder’s team has now tested in mice whether this approach can also protect the liver from fatty degeneration and chronic inflammation. Their results are published in Cell Metabolism.

Resistance to liver inflammation is independent of calorie intake

The animals were fed with a high-sugar and high-fat diet corresponding to the typical Western diet. One group of mice had constant access to the food. As expected, these animals gained weight and body fat and developed chronic liver inflammation.

The mice in the other group were given nothing to eat on two days a week (5:2 intermittent fasting, or 5:2 IF for short), but were allowed to eat as much as they wished on the other days. Despite the high-calorie diet, these animals did not put on weight, showed fewer signs of liver disease and had lower levels of biomarkers that indicate liver damage. In short, they were resistant to the development of MASH.

Interestingly, resistance to the development of a fatty liver was independent of the total calorie intake, as the animals immediately made up for the lost rations after the end of the fasting periods.

When experimenting with different variants of intermittent fasting, it was found that several parameters determine protection against liver inflammation: The number and duration of fasting cycles play a role, as does the start of the fasting phase. A 5:2 dietary pattern works better than 6:1; 24-hour fasting phases better than 12-hour ones. A particularly unhealthy diet requires more frequent dieting cycles.

Heikenwälder’s team now wanted to find out the molecular background of the response to fasting. To this end, the researchers compared protein composition, metabolic pathways and gene activity in the liver of fasting and non-fasting mice. Two main players responsible for the protective fasting response emerged: the transcription factor PPARα and the enzyme PCK1. The two molecular players work together to increase the breakdown of fatty acids and gluconeogenesis and inhibit the build-up of fats.

“The fasting cycles lead to profound metabolic changes, which together act as beneficial detoxification mechanisms and help to combat MASH,” says Heikenwälder, summarizing the molecular details.

The fact that these correlations are not just a mouse phenomenon was shown when tissue samples from MASH patients were examined: Here, too, the researchers found the same molecular pattern with reduced PPAR α and PCK1. Are PPAR α and PCK1 actually responsible for the beneficial effects of fasting? When both proteins were genetically switched off simultaneously in the liver cells of the mice, intermittent fasting was unable to prevent either chronic inflammation or fibrosis.

The drug pemafibrate mimics the effects of PPARα in the cell. Can the substance also mimic the protective effect of fasting? The researchers investigated this question in mice. Pemafibrate induced some of the favourable metabolic changes that were observed with 5:2 fasting. However, it was only able to partially mimic the protective effects of fasting. “This is hardly surprising, as we can only influence one of the two key players with pemafibrate. Unfortunately, a drug that mimics the effects of PCK1 is not yet available,” explains Mathias Heikenwälder.

Intermittent fasting as liver therapy

While Heikenwälder and his team initially focused on the effects of intermittent fasting on MASH prevention, then investigated whether the 5:2 diet could also alleviate existing chronic liver inflammation.

To this end, the team examined mice that had developed MASH after months of being fed a high-sugar, high-fat diet. After a further four months of 5:2 intermittent fasting (on the same diet), these animals were compared with the non-fasting control group. The fasting mice had better blood values, less fatty liver and liver inflammation and above all: they developed less liver cancer and had fewer cancer foci in the liver.

“This shows us that 5:2 intermittent fasting has great potential – both in the prevention of MASH and liver cancer, as well as in the treatment of established chronic liver inflammation,” summarises principal investigator Heikenwälder. “The promising results justify studies in patients to find out whether intermittent fasting protects against chronic liver inflammation as well as in the mouse model.”

The 5:2 fasting regimen is popular. It is considered comparatively easy to integrate into everyday life, as the fasting days can be tailored to personal needs and no specific foods are prohibited. “Nevertheless, there will always be people who can’t stick to a strict diet in the long term,” says Heikenwälder. “That’s why we want to continue to investigate which combinations of drugs we can use to fully mimic the protective effects of fasting.”

Source: German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ)

Time-restricted Eating and High-intensity Exercise Might Work Together to Improve Health

Photo by Malvestida on Unsplash

Combining time-restricted eating with high-intensity functional training may improve body composition and cardiometabolic parameters more than either alone, according to a study published May 1, 2024 in the open-access journal PLOS ONE by Ranya Ameur and Rami Maaloul from the University of Sfax, Tunisia, and colleagues.

Changes in diet and exercise are well-known ways to lose weight and improve cardiometabolic health. However, finding the right combination of lifestyle changes to produce sustainable results can be challenging. Prior studies indicate that time-restricted eating (which limits when, but not what, individuals eat) and high-intensity functional training (which combines intense aerobic and resistance exercise) may be beneficial and easier for individuals to commit to long term.

In a new study, researchers investigated the impact of time-restricted eating and high-intensity functional training on body composition and markers of cardiometabolic health such as cholesterol, blood glucose, and lipid levels. 64 women with obesity were assigned to one of three groups: time-restricted eating (diet only), high-intensity functional training (exercise only), or time-restricted eating plus high-intensity functional training (diet + exercise). Participants following the time-restricted eating regimen ate only between 8:00 am and 4:00 pm. Those in the functional training groups worked out three days per week with an instructor.

After 12 weeks, all three groups had significant weight loss and decreases in waist and hip circumference. Likewise, all groups showed favorable changes in lipid and glucose levels.

Some differences were seen between groups. For example, fat-free mass (a combination of lean mass and skeletal muscle mass) and blood pressure improved in the diet + exercise and exercise groups but did not change in the diet-only group.

Participants in the diet + exercise group generally experienced more profound changes in body composition and cardiometabolic parameters than either diet or exercise alone.

The researchers noted that this is a relatively small study, and it is difficult to tease out the contributions of specific exercise routines or of time-restricted eating and calorie reduction since both groups reduced their calorie intake. However, they note that combining time-restricted eating with high-intensity functional training might show promise in improving body composition and cardiometabolic health.

The authors add: “Combining time-restricted eating with High Intensity Functional Training is a promising strategy to improve body composition and cardiometabolic health.”

Provided by PLOS

Study Shows Intermittent Fasting Effective in Type 2 Diabetes

Photo by Photomix Company on Pexels

Time-restricted eating, also known as intermittent fasting, can help people with Type 2 diabetes lose weight and control their blood sugar levels, according to a new study published in JAMA Network Open from researchers at the University of Illinois Chicago.

Participants who ate only during an eight-hour window between noon and 8 pm each day actually lost more weight over six months than participants who were instructed to reduce their calorie intake by 25%. Both groups had similar reductions in long-term blood sugar levels, as measured by a test of haemoglobin A1C, which shows blood sugar levels over the past three months.

The study was conducted at UIC and enrolled 75 participants into three groups: those who followed the time-restricted eating rules, those who reduced calories and a control group. Participants’ weight, waist circumference, blood sugar levels and other health indicators were measured over the course of six months.

Senior author Krista Varady said that participants in the time-restricted eating group had an easier time following the regime than those in the calorie-reducing group. The researchers believe this is partly because patients with diabetes are generally told to cut back on calories by their doctors as a first line of defence, so many of these participants likely had already tried, and struggled with, that form of dieting. And while the participants in the time-restricted eating group were not instructed to reduce their calorie intake, they ended up doing so by eating within a fixed window.

“Our study shows that time-restricted eating might be an effective alternative to traditional dieting for people who can’t do the traditional diet or are burned out on it,” said Varady, a professor of kinesiology and nutrition. “For many people trying to lose weight, counting time is easier than counting calories.”

There were no serious adverse events reported during the six-month study. Occurrences of hypoglycaemia and hyperglycaemia did not differ between the diet groups and control groups.

Just over half the participants in the study were Black and another 40% were Hispanic. This is notable as diabetes is particularly prevalent among those groups, so having studies that document the success of time-restricted eating for them is particularly useful, the researchers said.

The study was small and should be followed up by larger ones, said Varady, who is also a member of the University of Illinois Cancer Center. While it acts as a proof of concept to show that time-restricted eating is safe for those with Type 2 diabetes, Varady said people with diabetes should consult their doctors before starting this sort of diet.

Source: University of Illinois Chicago

Study Shows that Intermittent Fasting Might Improve Alzheimer’s Symptoms

Photo by Matteo Vistocco on Unsplash

Circadian disruption is a hallmark of Alzheimer’s disease, affecting nearly 80% of patients with issues such as difficulty sleeping and worsening cognitive function at night. Currently there are no treatments for Alzheimer’s that target this aspect of the disease.

A new study in Cell Metabolism from researchers at University of California San Diego School of Medicine has shown in mice that it is possible to correct the circadian disruptions seen in Alzheimer’s disease with time-restricted feeding, a type of intermittent fasting focused on limiting the daily eating window without limiting the amount of food consumed.

In the study, mice that were fed on a time-restricted schedule showed improvements in memory and reduced accumulation of amyloid proteins in the brain. The authors say the findings will likely result in a human clinical trial.

“For many years, we assumed that the circadian disruptions seen in people with Alzheimer’s are a result of neurodegeneration, but we’re now learning it may be the other way around – circadian disruption may be one of the main drivers of Alzheimer’s pathology,” said senior study author Paula Desplats, PhD, professor at UC San Diego School of Medicine. “This makes circadian disruptions a promising target for new Alzheimer’s treatments, and our findings provide the proof-of-concept for an easy and accessible way to correct these disruptions.”

People with Alzheimer’s experience a variety of disruptions to their circadian rhythms, including changes to their sleep/wake cycle, increased cognitive impairment and confusion in the evenings, and difficulty falling and staying asleep.

“Circadian disruptions in Alzheimer’s are the leading cause of nursing home placement,” said Desplats. “Anything we can do to help patients restore their circadian rhythm will make a huge difference in how we manage Alzheimer’s in the clinic and how caregivers help patients manage the disease at home.”

Boosting the circadian clock is an emerging approach to improving health outcomes, and one way to accomplish this is by controlling the daily cycle of feeding and fasting. The researchers tested this strategy in a mouse model of Alzheimer’s disease, feeding the mice on a time-restricted schedule where they were only allowed to eat within a six-hour window each day. For humans, this would translate to about 14 hours of fasting each day.

Compared to control mice who were provided food at all hours, mice fed on the time-restricted schedule had better memory, were less hyperactive at night, followed a more regular sleep schedule and experienced fewer disruptions during sleep. The test mice also performed better on cognitive assessments than control mice, demonstrating that the time-restricted feeding schedule was able to help mitigate the behavioral symptoms of Alzheimer’s disease.

The researchers also observed improvements in the mice on a molecular level. In mice fed on a restricted schedule, the researchers found that multiple genes associated with Alzheimer’s and neuroinflammation were expressed differently. They also found that the feeding schedule helped reduce the amount of amyloid protein that accumulated in the brain. Amyloid deposits are one of the most well-known features of Alzheimer’s disease.

Because the time-restricted feeding schedule was able to substantially change the course of Alzheimer’s in the mice, the researchers are optimistic that the findings could be easily translatable to the clinic, especially since the new treatment approach relies on a lifestyle change rather than a drug.

“Time-restricted feeding is a strategy that people can easily and immediately integrate into their lives,” said Desplats. “If we can reproduce our results in humans, this approach could be a simple way to dramatically improve the lives of people living with Alzheimer’s and those who care for them.”

Skipping Breakfast may Weaken Immune Cells

Photo by Malvestida on Unsplash

Fasting may be detrimental to fighting off infection, and could lead to an increased risk of heart disease, suggests a new study published in Immunity. The research in mouse models, shows that skipping meals triggers a response in the brain that negatively affects immune cells. The results could lead to a better understanding of how chronic fasting may affect the body long term.

“There is a growing awareness that fasting is healthy, and there is indeed abundant evidence for the benefits of fasting. Our study provides a word of caution as it suggests that there may also be a cost to fasting that carries a health risk,” says lead author Filip Swirski, PhD, Director of the Cardiovascular Research Institute at Icahn Mount Sinai. “This is a mechanistic study delving into some of the fundamental biology relevant to fasting. The study shows that there is a conversation between the nervous and immune systems.”

As part of a larger study on different fasting times affect the immune systems, researchers focused on the role of breakfast. They fed one group of mice breakfast right after waking up (breakfast is their largest meal of the day), and the other group had no breakfast. Researchers collected blood samples in both groups when mice woke up (baseline), then four hours later, and eight hours later.

Analysing the blood work, researchers saw a difference in the number of monocytes, which are white blood cells that are made in the bone marrow and travel through the body, where they play many critical roles, from fighting infections, to heart disease, to cancer.

At baseline, all mice had the same amount of monocytes. But after four hours, monocytes in mice from the fasting group were dramatically affected. Researchers found that 90% of these cells disappeared from the bloodstream, and the number further declined at eight hours. Meanwhile monocytes in the non-fasting group were unaffected.

In fasting mice, researchers discovered the monocytes travelled back to the bone marrow to hibernate. At the same time, production of new cells in the bone marrow diminished. The normally short-lived monocytes in the bone marrow survived longer as a consequence of staying in the bone marrow, and aged differently than the monocytes that stayed in the blood.

The researchers continued to fast mice for up to 24 hours, and then reintroduced food. The cells hiding in the bone marrow surged back into the bloodstream within a few hours, provoking heightened level of inflammation. Instead of protecting against infection, these altered monocytes were more inflammatory, making the body less resistant to fighting infection.

Researchers found that specific regions in the brain controlled the monocyte response during fasting. This study demonstrated that fasting elicits a stress response in the brain (feeling ‘hangry’) and this instantly triggers a large-scale migration of these white blood cells from the blood to the bone marrow, and then back to the bloodstream shortly after food is reintroduced.

Dr Swirski emphasised that while there is also evidence of the metabolic benefits of fasting, this new study is a useful advance in the full understanding of the body’s mechanisms.

“The study shows that, on the one hand, fasting reduces the number of circulating monocytes, which one might think is a good thing, as these cells are important components of inflammation. On the other hand, reintroduction of food creates a surge of monocytes flooding back to the blood, which can be problematic. Fasting, therefore regulates this pool in ways that are not always beneficial to the body’s capacity to respond to a challenge such as an infection,” explains Dr Swirski. “Because these cells are so important to other diseases like heart disease or cancer, understanding how their function is controlled is critical.”

Source: The Mount Sinai Hospital / Mount Sinai School of Medicine

In Some Diabetes Patients, Intermittent Fasting Induces Remission

Photo by Towfiqu Barbhuiya on Unsplash

After an intermittent fasting diet intervention, patients achieved complete diabetes remission, defined as an HbA1c level of < 6.5% at least one year after stopping diabetes medication, according to a new study published in the Journal of Clinical Endocrinology & Metabolism.

Intermittent fasting diets, which involve restricting eating to a specific window of time, have become popular in recent years as an effective weight loss method. Previous studies have shown that intermittent fasting can lower the risk of diabetes and heart disease.

“Type 2 diabetes is not necessarily a permanent, lifelong disease. Diabetes remission is possible if patients lose weight by changing their diet and exercise habits,” said Dongbo Liu, PhD, of Hunan Agricultural University in China. “Our research shows an intermittent fasting, Chinese Medical Nutrition Therapy (CMNT), can lead to diabetes remission in people with type 2 diabetes, and these findings could have a major impact on the over 537 million adults worldwide who suffer from the disease.”

The researchers conducted a 3-month intermittent fasting diet intervention among 36 people with diabetes and found almost 90% of participants, including those who took blood sugar-lowering agents and insulin, reduced their diabetes medication intake after intermittent fasting. Fifty-five percent of these people experienced diabetes remission, discontinued their diabetes medication and maintained it for at least one year.

The study challenges the conventional view that diabetes remission can only be achieved in those with a shorter diabetes duration (0–6 years). Sixty-five percent of the study participants who achieved diabetes remission had a diabetes duration of more than six years (6–11 years).

“Diabetes medications are costly and a barrier for many patients who are trying to effectively manage their diabetes. Our study saw medication costs decrease by 77% in people with diabetes after intermittent fasting,” Liu said.

Source: The Endocrine Society

Intermittent Fasting does not Impact Female Sex Hormones

Bathroom scale
Photo by I Yunmai on Unsplash

Intermittent fasting has been shown to be an effective way to lose weight, but critics have worried that the practice may have a negative impact on women’s reproductive hormones. Now, researchers bring new evidence to the table in a study published in Obesity.

The researchers, led by Krista Varady, University of Illinois Chicago professor of nutrition, followed a group of pre- and post-menopausal obese women for a period of eight weeks on the ‘warrior diet’ method of intermittent fasting.

The warrior diet prescribes a time-restricted feeding window of four hours per day, during which dieters can eat without counting calories before resuming a water fast until the next day.

They measured the differences in hormone levels, obtained by analysing blood sample data, in groups of dieters who stuck to four- and six-hour feeding windows against a control group that followed no diet restrictions.

Varady and her team found that levels of sex-binding globulin hormone, a protein that carries reproductive hormones throughout the body, was unchanged in the dieters after eight weeks. The same held true for both testosterone and androstenedione, a steroid hormone that the body uses to produce both testosterone and oestrogen.

However, dehydroepiandrosterone or DHEA, a hormone that fertility clinics prescribe to improve ovarian function and egg quality, was significantly lower in both pre-menopausal and post-menopausal women at the end of the trial, dropping by about 14%.

While the drop in DHEA levels was the most significant finding of the study, in both pre- and post-menopausal women, DHEA levels remained within the normal range by the end of the eight-week period.

“This suggests that in pre-menopausal women, the minor drop in DHEA levels has to be weighed against the proven fertility benefits of lower body mass,” Varady said. “The drop in DHEA levels in post-menopausal women could be concerning because menopause already causes a dramatic drop in estrogen, and DHEA is a primary component of estrogen. However, a survey of the participants reported no negative side effects associated with low estrogen post-menopause, such as sexual dysfunction or skin changes.”

As an added benefit, since high DHEA has been linked to breast cancer risk, Varady said a moderate drop in levels might be helpful in reducing that risk for both pre- and post-menopausal women.

The study measured levels of oestradiol, oestrone and progesterone as well, but only in post-menopausal women, due to the changing levels of these hormones throughout pre-menopausal women’s menstrual cycles. Among post-menopausal women, there was no change in these hormones at the end of eight weeks.

Women in both the four-hour and six-hour dieting groups experienced weight loss of 3% to 4% of their baseline weight throughout the course of the study, compared with the control group, which had almost no weight loss. The dieters also saw a drop in insulin resistance and in biomarkers of oxidative stress.

Perimenopausal women, who are typically in their 40s, were excluded from the study.

Still, Varady said, “I think this is a great first step. We’ve observed thousands of pre- and post-menopausal women through different alternate-day fasting and time-restricted eating strategies. All it’s doing is making people eat less. By shortening that eating window, you’re just naturally cutting calories. Much of the negative information on intermittent fasting reported has come from studies on mice or rats. We need more studies to look at the effects of intermittent fasting on humans.”

Source: University of Illinois Chicago

Intermittent Fasting May Aid Nerve Repair

A healthy neuron.
A healthy neuron. Credit: NIH

A new mouse study published in Nature showed that intermittent fasting changes gut bacteria, and increases the ability to recover from nerve damage. The fasting led to gut bacteria increasing production of 3-Indolepropionic acid (IPA), a metabolite which is required for regenerating axons.

The bacteria that produces IPA, Clostridium sporogenesis, is found naturally in the guts of humans as well as mice and IPA is found in human bloodstreams too, the researchers said. 

“There is currently no treatment for people with nerve damage beyond surgical reconstruction, which is only effective in a small percentage of cases, prompting us to investigate whether changes in lifestyle could aid recovery,” said study author Professor Simone Di Giovanni at Imperial College London.

“Intermittent fasting has previously been linked by other studies to wound repair and the growth of new neurons – but our study is the first to explain exactly how fasting might help heal nerves.”

The study assessed nerve regeneration of mice where the sciatic nerve, the longest nerve running from the spine down the leg, was crushed. Half of the mice underwent intermittent fasting (one day with food, one day without), while the other half ate freely. These diets continued for a period of 10 days or 30 days before their operation, and the mice’s recovery was monitored 24 to 72 hours after the nerve was severed. The regrown axons were about 50% greater in mice that had been fasting.

Prof Di Giovanni said, “I think the power of this is that opens up a whole new field where we have to wonder: is this the tip of an iceberg? Are there going to be other bacteria or bacteria metabolites that can promote repair?”

The researchers also studied how fasting led to this nerve regeneration. They found that there were significantly higher levels of specific metabolites, including IPA, in the blood of diet-restricted mice.

To confirm whether IPA led to nerve repair, the mice were treated with antibiotics to remove gut bacteria. They were then given gene-edited of Clostridium sporogenesis that could or could not produce IPA.

“When IPA cannot be produced by these bacteria and it was almost absent in the serum, regeneration was impaired. This suggests that the IPA generated by these bacteria has an ability to heal and regenerate damaged nerves,” Prof Di Giovanni said. 

Importantly, when IPA was administered to the mice orally after a sciatic nerve injury, regeneration and increased recovery was observed between two and three weeks after injury.

The next step is investigating spinal cord injuries in mice, along with seeing if more frequent IPA administrations increase its efficacy.

“One of our goals now is to systematically investigate the role of bacteria metabolite therapy.” Prof Di Giovanni said.

More studies will need to investigate whether IPA increases after fasting in humans and the efficacy of IPA and intermittent fasting as a potential treatment in people.

He said: “One of the questions that we haven’t explored fully is that, since IPA lasts in blood for four to six hours in high concentration, would administering it repeatedly throughout the day or adding it to a normal diet help maximise its therapeutic effects?”

Source: Imperial College

Intermittent Fasting Triggers an Anti-inflammatory Response

Credit: Intermountain Healthcare

Intermittent fasting may not only be a hot dieting trend, but it also has broader health benefits, including helping to fight inflammation, according to a new study. The new research shows that intermittent fasting raises the levels of galectin-3, a protein tied to inflammatory response.

Intermittent fasting has previously been shown to possibly improve health markers not related to weight. 

“Inflammation is associated with higher risk of developing multiple chronic diseases, including diabetes and heart disease. We’re encouraged to see evidence that intermittent fasting is prompting the body to fight inflammation and lowering those risks,” said Benjamin Horne, PhD, principal investigator of the study and director of cardiovascular and genetic epidemiology at the Intermountain Healthcare Heart Institute.

The findings of the study were presented at the American Heart Association’s Scientific Sessions 2021.

These results form part of Intermountain’s WONDERFUL Trial which is studying intermittent fasting. It found that intermittent fasting causes drops in metabolic syndrome score (MSS) and insulin resistance.  

This particular study followed 67 patients aged 21 to 70 who all had at least one metabolic syndrome feature or type 2 diabetes, and were also not taking anti-diabetic or statin medication, and had raised LDL cholesterol levels.

Of the 67 patients studied, 36 were prescribed an intermittent fasting schedule: twice a week water-only 24-hour fasting for four weeks, then once a week water-only 24 hour-fasting for 22 weeks. Fasts could not be done on consecutive days. The remaining 31 participants continued their routines.

After 26 weeks, participants’ galectin-3 was measured, and found to be higher in the intermittent fasting group. Lower rates of HOMA-IR (insulin resistance) and MSS (metabolic syndrome) were found, which researchers believe may be similar to the reported effects of SGLT-2 inhibitors.

“In finding higher levels of galectin-3 in patients who fasted, these results provide an interesting mechanism potentially involved in helping reduce the risk of heart failure and diabetes,” said Dr Horne, who added that a few members of the trial team completed the same regime before the study started to make sure that it was doable and not overly onerous for participants.

“Unlike some IF diet plans that are incredibly restrictive and promise magic weight loss, this isn’t a drastic form of fasting. The best routine is one that patients can stick to over the long term, and this study shows that even occasional fasting can have positive health effects,” he added.

Source: EurekAlert!