Tag: hyperbaric oxygen

Hyperbaric Therapy Reduces Neuroinflammation in Autism

Depiction of a human brain
Image by Fakurian Design on Unsplash

A new study at Tel Aviv University showed significant improvements in social skills and the condition of the autistic brain through hyperbaric therapy. The study which is reported in the journal International Journal of Molecular Sciences, was conducted on lab models of autism.

Hyperbaric medicine, where patients sit in special high-pressure chambers while breathing pure oxygen, is considered safe and, besides treating decompression sickness in divers, is already in use for other conditions. The use of hyperbaric medicine to treat autism is contentious, with many holding that it is based on pseudoscience. In recent years, scientific evidence has been accumulating that unique protocols of hyperbaric treatments improve the supply of blood and oxygen to the brain, thereby improving brain function.

Changes observed in the brain included a reduction in neuroinflammation, which is known to be associated with autism. A significant improvement was also found in the social functioning of the animal models treated in the pressure chamber. The study’s success has many implications regarding the applicability and understanding of treating autism using pressure chamber therapy.

The breakthrough was led by doctoral student Inbar Fischer, from the laboratory of Dr Boaz Barak of Tel Aviv University.

Improved brain function

“The medical causes of autism are numerous and varied, and ultimately create the diverse autistic spectrum with which we are familiar,” explains Dr Barak. “About 20% of autistic cases today are explained by genetic causes, that is, those involving genetic defects, but not necessarily ones that are inherited from the parents. Despite the variety of sources of autism, the entire spectrum of behavioural problems associated with it are still included under the single broad heading of ‘autism,’ and the treatments and medications offered do not necessarily correspond directly to the reason why the autism developed.”

In the preliminary phase of the study, a girl carrying the mutation in the SHANK3 gene, which is known to lead to autism, received treatments in the pressure chamber, conducted by Prof Shai Efrati. After the treatments, it was evident that the girl’s social abilities and brain function had improved considerably.

In the next stage, and in order to comprehend the success of the treatment more deeply, the team of researchers at Dr Barak’s laboratory sought to understand what being in a pressurised chamber does to the brain. To this end, the researchers used lab models carrying the same genetic mutation in the SHANK3 gene as that carried by the girl who had been treated. The experiment comprised a protocol of 40 one-hour treatments in a pressure chamber over several weeks.

“We discovered that treatment in the oxygen-enriched pressure chamber reduces inflammation in the brain and leads to an increase in the expression of substances responsible for improving blood and oxygen supply to the brain, and therefore brain function,” explains Dr Barak. “In addition, we saw a decrease in the number of microglial cells, immune system cells that indicate inflammation, which is associated with autism.”

Increased social interest

“Beyond the neurological findings we discovered, what interested us more than anything was to see whether these improvements in the brain also led to an improvement in social behaviour, which is known to be impaired in autistic individuals,” adds Dr Barak. “To our surprise, the findings showed a significant improvement in the social behaviour of the animal models of autism that underwent treatment in the pressure chamber compared to those in the control group, who were exposed to air at normal pressure, and without oxygen enrichment. The animal models that underwent treatment displayed increased social interest, preferring to spend more time in the company of new animals to which they were exposed in comparison to the animal models from the control group.”

Inbar Fischer concludes, “the mutation in the animal models is identical to the mutation that exists in humans. Therefore, our research is likely to have clinical implications for improving the pathological condition of autism resulting from this genetic mutation, and likely also of autism stemming from other causes. Because the pressure chamber treatment is non-intrusive and has been found to be safe, our findings are encouraging and demonstrate that this treatment may improve these behavioral and neurological aspects in humans as well, in addition to offering a scientific explanation of how they occur in the brain.”

Source: Tel Aviv University

A Promising Antidote for Carbon Monoxide Poisoning

Photo by Pablo Stanic on Unsplash

Carbon monoxide (CO) is an odourless and colourless gas is produced from incomplete burning, and is a silent killer, binding to haemoglobin with few treatments available other than administering oxygen. Now, research published in Chemical Communications suggests a path to a possible antidote.

In the US, more than 400 deaths and 20 000 emergency room visits are attributable to carbon monoxide (CO) poisoning every year. While CO detectors and making sure fireplace and heaters work correctly can help prevent exposure, there are limited treatment options for those suffering from CO poisoning.

To address this, Tim Johnstone, an assistant professor of chemistry and biochemistry at UC Santa Cruz, has been working to develop an easy-to-administer antidote.

“If you are exposed to carbon monoxide, the primary treatment right now is fresh air,” said A/Prof Johnstone. “It is a question of time. In fresh air, you need four to six hours for the level of CO in your blood to be cut in half. With 100 percent oxygen or hyperbaric oxygen, the half-life shortens further. Even then, the high blood levels of CO can persist long enough to lead to long-term deficits and neurological problems.”

A/Prof Johnstone has been studying the chemistry of carbon monoxide. In a biological context, CO binds to metal centres such as the iron in haemoglobin, preventing this protein from carrying out its oxygen carrying function.

To mitigate this, A/Prof Johnstone has designed small molecules that possess many of the features of the active site of haemoglobin but can bind CO much more tightly than the protein. In his most recent study, his group described the ability of one such molecule to bind CO, sequester CO that is already bonded to haemoglobin, and rescue red blood cells exposed to CO: all promising signs for a future antidote.

These are early results, said A/Prof Johnstone, but the hope is to create a point-of-care treatment that can be administered quickly. The most common carbon monoxide poisoning symptoms are headache, dizziness, weakness, upset stomach, vomiting, chest pain, and confusion. Because it mimics the flu, people may experience symptoms without realizing the danger and delay seeking treatment.

Source: University of California Santa Cruz