Tag: heritable conditions

A New Genetic Culprit in Huntington’s Disease

Photo by Sangharsh Lohakare on Unsplash

Researchers in Berlin and Düsseldorf have implicated a new gene in the progression of Huntington’s disease in a brain organoid model. The gene may contribute to brain abnormalities much earlier than previously thought. The study is out now in Nature Communications.

The researchers are the first to implicate the gene CHCHD2 in Huntington’s disease (HD) – an incurable genetic neurodegenerative disorder – and identified the gene as a potentially new therapeutic target. In a brain organoid model of the disease, the researchers found that mutations in the Huntington gene HTT also affect CHCHD2, which is involved in maintaining the normal function of mitochondria.

Six different labs at the Max Delbrück Center participated in the study, led by Dr Jakob Metzger of the “Quantitative Stem Cell Biology” lab at the and the “Stem Cell Metabolism” lab of Professor Alessandro Prigione at Heinrich Heine University Düsseldorf (HHU). Each lab contributed their unique expertise on Huntington’s disease, brain organoids, stem cell research and genome editing. “We were surprised to find that Huntington’s disease can impair early brain development through defects associated with mitochondrial dysfunction,” says Dr Pawel Lisowski, co-lead author in the Metzger lab at the Max Delbrück Center.

Moreover, “the organoid model suggests that HTT mutations damage brain development even before clinical symptoms appear, highlighting the importance of detecting the late-onset neurodegenerative disease early,” Selene Lickfett, co-lead author and a doctoral student in the Faculty of Mathematics and Natural Science in the lab of Prigione at HHU adds.

The unusual repetition of three letters

Huntington’s disease is caused when the nucleotides Cytosine, Adenine and Guanine are repeated an excessive number of times in the in the Huntington gene HTT. People with 35 or less repeats are generally not at risk of developing the disease, while carrying 36 or more repeats has been associated with disease. The greater the number of repeats, the earlier the disease symptoms are likely to appear, explains Metzger, a senior author of the study. The mutations cause nerve cells in the brain to progressively die. Those affected, steadily lose muscle control and develop psychiatric symptoms such as impulsiveness, delusions and hallucinations. Huntington’s disease affects approximately five to 10 in every 100 000 people worldwide. Existing therapies only treat the symptoms of the disease, they don’t slow its progression or cure it.

The challenge of HTT gene editing

To study how mutations in the HTT gene affect early brain development, Lisowski, first used variants of the Cas9 gene editing technology and manipulation of DNA repair pathways to modify healthy induced pluripotent stem cells such that they carry a large number of CAG repeats. This was technically challenging because gene editing tools are not efficient in gene regions that contain sequence repeats, such as the CAG repeats in HTT, says Lisowski.

The genetically modified stem cells were then grown into brain organoids – three-dimensional structures a few millimetres in size that resemble early-stage human brains. When the researchers analysed gene expression profiles of the organoids at different stages of development, they noticed that the CHCHD2 gene was consistently under expressed, which reduced metabolism of neuronal cells. CHCHD2 is involved in ensuring the health of mitochondria – the energy producing structures in cells. CHCHD2 has been implicated in Parkinson’s disease, but never before in Huntington’s.

They also found that when they restored the function of the CHCHD2 gene, they could reverse the effect on neuronal cells. “That was surprising,” says Selene Lickfett. “It suggests in principle that this gene could be a target for future therapies.”

Moreover, defects in neural progenitor cells and brain organoids occurred before potentially toxic aggregates of mutated Huntingtin protein had developed, adds Metzger, indicating that disease pathology in the brain may begin long before it is clinically evident.

“The prevalent view is that the disease progresses as a degeneration of mature neurons,” says Prigione. “But if changes in the brain already develop early in life, then therapeutic strategies may have to focus on much earlier time-points.”

Wide reaching implications

“Our genome editing strategies, in particular the removal of the CAG repeat region in the Huntington gene, showed great promise in reversing some of observed developmental defects. This suggests a potential gene therapy approach,” says Prigione. Another potential approach could be therapies to increase CHCHD2 gene expression, he adds.

The findings may also have broader applications for other neurodegenerative diseases, Prigione adds. “Early treatments that reverse the mitochondrial phenotypes shown here could be a promising avenue for counteracting age-related diseases like Huntington’s disease.”

Source: Max Delbrück Center for Molecular Medicine in the Helmholtz Association

Chronic Cough may be a Hereditary Condition

Photo by Towfiqu barbhuiya on Unsplash

Chronic cough is among the most common reasons for seeking medical care, with middle-aged women the group most affected. A pair of new studies published in ERJ Open Research and PLOS ONE suggest that this may be a hereditary condition.

“More than 10% of the population has a chronic cough, which has been shown to entail several negative consequences: reduced quality of life, reduced ability to work and voice problems. At present, we have insufficient knowledge about what causes coughing and how best to treat it,” notes Össur Ingi Emilsson, Docent in Lung, Allergy and Sleep Research at the Department of Medical Sciences at Uppsala University.

The two studies from the department have investigated both how cough is currently managed in Swedish healthcare, and whether chronic cough can be hereditary.

The PLOS ONE study, based on data from the Swedish healthcare register, showed that 1–2% of the entire Swedish population sought care for chronic cough between 2016 and 2018, usually in primary care. Of those who sought care, the majority appear to have had a long-standing cough. The prevalence is highest among women between the ages of 40 and 60, with around 21 000 women seeking treatment for cough in these three years.

“Women generally seem to have a slightly more sensitive cough reflex, so the threshold for abnormal coughing is lower in women than in men. For me, it was unexpected that only one to two percent of patients seek help for a troublesome cough when over ten percent are affected. This can be partly explained by the lack of effective treatments. There also appeared to be some differences in care between different parts of the country, suggesting that better guidelines are needed for investigating and treating chronic cough,” continues Emilsson.

The other study, in ERJ Open Research, has provided a clue as to why some individuals develop chronic cough. Cough appears to be a hereditary phenomenon. In a large population study in northern Europe of 7155 parents and their 8176 adult children aged 20 years and over, it was found that if one parent has had chronic dry cough, their offspring were over 50% more likely to have chronic dry cough. This link was independent of confounding factors such as asthma, biological sex and smoking.

“A similar relationship was seen for productive cough, but in those cases smoking had a greater impact on prevalence. These results suggest that there is a genetic link to chronic cough,” adds Emilsson.

The research team has already begun a treatment study into chronic cough. Based on these new findings, the group is now moving forward with studies on genetic variants in collaboration with the Icelandic company deCODE genetics, which analyses the human genome. The aim is to identify which genetic variants are linked to chronic cough.

“This could provide a better understanding of the occurrence of chronic cough, which may ultimately result in better treatments for this difficult-to-treat condition,” explains Emilsson.

Source: Uppsala University