Gene Mutation in Young Girl May Finally Yield Lupus Treatment
A study published in Nature has identified mutations in an X chromosome gene that senses viral RNA, as a cause of the autoimmune disease lupus, a finding which may explain why the disease is far more common in females, and which might lead to new treatments.
In the study, whole genome sequencing was performed on the DNA of a Spanish child named Gabriela, who was diagnosed with severe lupus at age 7. Such a severe case with early onset of symptoms is rare and suggests a single genetic cause.
In their genetic analysis, the researchers discovered a single point mutation in the TLR7 gene. Referrals from other institutions, they were able to identify other cases of severe lupus where this gene was also mutated.
To confirm that the mutation causes lupus, the team inserted the gene into mice, which went on to develop the disease and showed similar symptoms. The mouse model and the mutation were both named ‘kika’ by Gabriela, the young girl central to this discovery.
Carola Vinuesa, senior author and principal investigator said: “It has been a huge challenge to find effective treatments for lupus, and the immune-suppressors currently being used can have serious side effects and leave patients more susceptible to infection. There has only been a single new treatment approved by the FDA in about the last 60 years.
“This is the first time a TLR7 mutation has been shown to cause lupus, providing clear evidence of one way this disease can arise.”
Professor Nan Shen, co-director of CACPI adds: “While it may only be a small number of people with lupus who have variants in TLR7 itself, we do know that many patients have signs of overactivity in the TLR7 pathway. By confirming a causal link between the gene mutation and the disease, we can start to search for more effective treatments.”
The mutation identified by the researchers makes TLR7 protein bind more readily guanosine and become more active. This in turn increases the sensitivity of the immune cell, making it more likely to incorrectly target healthy tissue.
Interestingly, other studies have shown mutations that cause TLR7 to become less active are associated with some cases of severe COVID infection, highlighting the delicate balance of a healthy immune system.
The findings could also explain why lupus is 10 times more common in females than in males. Because TLR7 is located on the X chromosome, females have two copies of the gene while males have one. Usually, in females one of the X chromosomes is inactive, but in this section of the chromosome, silencing of the second copy is often incomplete. This means females with a mutation in this gene can have two functioning copies.
Study co-author Dr Carmen de Lucas Collantes, said: “Identification of TLR7 as the cause of lupus in this unusually severe case ended a diagnostic odyssey and brings hope for more targeted therapies for Gabriela and other lupus patients likely to benefit from this discovery.”
Gabriela, now a teenager, remains in touch with the research team. She said, “I hope this finding will give hope to people with lupus and make them feel they are not alone in fighting this battle. Hopefully the research can continue and end up in a specific treatment that can benefit so many lupus warriors who suffer from this disease.”
The researchers are now investigating the repurposing of existing treatments which target the TLR7 gene. By targeting this gene, they hope to be able to also help patients with related conditions.
Carola added: “There are other systemic autoimmune diseases, like rheumatoid arthritis and dermatomyositis, which fit within the same broad family as lupus. TLR7 may also play a role in these conditions.”
Source: Francis Crick Institute