Tag: Chinese traditional medicine

AI Finds that an Antimalarial Drug might Treat Osteoporosis Too

Photo by Ekamelev on Unsplash

Using a deep learning algorithm, which is a kind of artificial intelligence (AI), researchers reporting have found that dihydroartemisinin (DHA), an antimalarial drug and derivative of a traditional Chinese medicine, could treat osteoporosis as well. Publishing their findings in ACS Central Science, the team showed that in mice, DHA effectively reversed osteoporosis-related bone loss.

In healthy people, there is a balance between the osteoblasts that build new bone and osteoclasts that break it down. Current treatments for osteoporosis primarily focus on slowing the activity of the ‘wrecking crew’ of osteoclasts. But osteoblasts, or more specifically, their precursors known as bone marrow mesenchymal stem cells (BMMSCs), could be the basis for a different approach. During osteoporosis, these multipotent cells tend to turn into fat-creating cells instead, but they could be reprogrammed to help treat the disease. Previously, Zhengwei Xie and colleagues developed a deep learning algorithm that could predict how effectively certain small-molecule drugs reversed changes to gene expression associated with the disease. This time, joined by Yan Liu and Weiran Li, they wanted to use the algorithm to find a new treatment strategy for osteoporosis that focused on BMMSCs.

The team ran their program on a profile of differently expressed genes in newborn and adult mice. One of the top-ranked compounds identified was DHA, a derivative of artemisinin and a key component of malaria treatments. Administering DHA extract for six weeks to mice with induced osteoporosis significantly reduced bone loss in their femurs and nearly completely preserved bone structure. To improve delivery, the team designed a more robust system using injected, DHA-loaded nanoparticles. Bones of mice with osteoporosis that received the treatment were similar to those of the control group, and the treatment showed no evidence of toxicity. In further tests, the team determined that DHA interacted with BMMSCs to maintain their stemness and ultimately produce more osteoblasts. The researchers say that this work demonstrates that DHA is a promising therapeutic agent for osteoporosis.

Source: American Chemical Society

Turning a Traditional Chinese Medicinal Plant into a Cancer Fighter

Photo by Bundo Kim on Unsplash

The evolutionary secrets that enable the traditional Chinese medicinal herb known as barbed skullcap to produce cancer fighting compounds have been unlocked by a collaboration of UK and Chinese researchers, who published their research in the journal Molecular Plant.

The researchers used DNA sequencing technology to assemble the genomic sequence of skullcap (Scutellaria barbata) known in China as banzhilian. This gave researchers the genetic information, a microevolutionary history, required to identify how the plant produces the compound scutebarbatine A, which acts against a range of cancer cells.

Professor Cathie Martin, Group Leader at the John Innes Centre, and one of the authors of the study said, “We have found that the primary metabolite has activity against cancer cells but not non-cancer cells which is especially important for an anti-cancer metabolite. Now we are looking to develop synthetic methods for producing more of the lead compound.”

In Traditional Chinese Medicine (TCM), to isolate medicinal chemistry from the plant, the herb is boiled in water for two hours and extract is dried to produce a powder and taken as a decoction (concentrated liquid). Now, with the knowledge of the genes that make up the biochemical pathway behind the anti-cancer activity of the herb, researchers are close to being able to synthesise larger quantities of compounds more rapidly and sustainably by using a host such as yeast.

The research is led by CEPAMS, a partnership between the John Innes Centre and the Chinese Academy of Science and supported by The Royal Society.

“This is a fantastic collaboration about developing interesting drug leads from natural resources and shows the practical value of focusing on the microevolution of a species” said Professor Martin.

The Skullcap genus has been used for centuries in TCM for treatment of different medical conditions. Clinical work has shown that preparations based on Scutellaria barbata during chemotherapy can reduce the risk of metastatic tumours.

CEPAMS Group Leader based at Shanghai Dr Evangelos Tatsis said, “Natural products have long been the lead compounds for the discovery of new drugs. By following the trail of the traditional Chinese plants, we can develop new anti-cancer medicines and this research marks a crucial step in that direction.”

Plant-based traditional medicines have long been used to provide leads for the new drug discovery, leading to drugs such as vinblastine and taxol which are now used clinically as anticancer drugs.

TCM is one of the best catalogued systems with empirical information about the therapeutic properties of herbal remedies.

Anti-cancer drugs obtained from traditional Chinese medicine have higher efficacy than chemical synthetic drugs and with less toxic side effects. The genomes of medicinal skullcaps reveal the polyphyletic origins of clerodane diterpene biosynthesis in the family Laminiaceae, is published in Molecular Plant

Source: John Innes Centre

Medicinal Plant Extract Could Quell Opioid Epidemic

Photo by Bill Oxford on Unsplash

In a bid to tackle the global opioid crisis, researchers have found that a Chinese medicinal plant extract can prevent morphine tolerance and dependence while also reversing opiate addiction. The researchers published their results in Pharmaceuticals.

For over two decades, opioid analgesic overprescription has driven a wave of misuse and consequent drive overdose deaths around the world, with the number of drug overdose deaths tripling in the US from 1997 to 2017. The COVID pandemic has only worsened the opioid epidemic. Fortunately, the documented effects of YHS, the extract of the plant Corydalis yanhusuo, could help curb the opioid epidemic.

“It is critical that we decrease the use and abuse of opiates,” said Olivier Civelli, PhD, professor of pharmaceutical sciences at the UCI School of Pharmacy & Pharmaceutical Sciences and corresponding author. “To help achieve this goal, we are proposing the use of this therapeutic plant. When used in animals, the Corydalis extract prevents pain and the negative effects of opiate use. The next step would be to test it with humans.”

The overprescription of opioid analgesics stemmed from treatment of chronic pain requiring repeated opioid administrations. This ultimately leads to tolerance, physical dependence, and addiction.

One possible solution involves a co-medication that maintains the analgesic benefits of opioids while preventing their adverse liabilities. The study showed that YHS, when co-administered with morphine, inhibits morphine tolerance, dependence and addiction. 

In Chinese traditional medicine, YHS has been used as an analgesic for centuries. It is considered safe and readily available for purchase.
“Opiate tolerance is of utmost importance to opiate users,” ProfvCivelli said. “They need to constantly increase the need of opiates to reach the same analgesic response. This is what leads to opiate overdose. YHS prevents opiate tolerance, so there is less need to increase opiate consumption.”

Source: University of California, Irvine