Tag: calorie intake

In Humans, Reducing Calorie Intake Rejuvenates Muscles and Stimulates Anti-ageing Effects

Photo by Thought Catalog on Unsplash

Reducing overall calorie intake may rejuvenate muscles and activate biological pathways important for good health, according new study, published in the journal Aging Cell. Calorie restriction, which cuts intake of calories but not essential nutrients, has long been known to delay the progression of age-related diseases in animal models. This finding, by researchers at the National Institutes of Health and their colleagues, suggests the same biological mechanisms may also apply to humans.

Researchers analysed data from participants in the Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE), a study supported by the National Institute on Aging (NIA) that examined whether moderate calorie restriction conveys the same health benefits seen in animal studies. They found that during a two-year span, the goal for participants was to reduce their daily caloric intake by 25%, but the highest the group was able to reach was a 12% reduction. Even so, this slight reduction in calories was enough to activate most of the biological pathways that are important in healthy aging.

“A 12% reduction in calorie intake is very modest,” said corresponding author and NIA Scientific Director Luigi Ferrucci, MD, PhD. “This kind of small reduction in calorie intake is doable and may make a big difference in your health.”

The research team next sought to understand the molecular underpinnings of the benefits seen in limited, previous research of calorie restriction in humans. One study showed that individuals on calorie restriction lost muscle mass and an average of 20 pounds of weight over the first year and maintained their weight for the second year. However, despite losing muscle mass, calorie restriction participants did not lose muscle strength, indicating calorie restriction improved the amount of force generated by each unit of muscle mass, called muscle specific force.

For the current study, scientists used thigh muscle biopsies from CALERIE participants that were collected when individuals joined the study and at one-year and two-year follow ups.

To figure out which human genes were impacted during calorie restriction, the scientists isolated messenger RNA (mRNA), a molecule that contains the code for proteins, from muscle samples. The team determined the protein sequence of each mRNA and used the information to identify which genes originated specific mRNAs. Further analysis helped the scientists establish which genes during calorie restriction were upregulated, meaning the cells made more mRNA; and which were downregulated, meaning the cells produced less mRNA. The researchers confirmed calorie restriction affected the same gene pathways in humans as in mice and non-human primates. For example, a lower caloric intake upregulated genes responsible for energy generation and metabolism, and downregulated inflammatory genes leading to lower inflammation.

“Since inflammation and aging are strongly coupled, calorie restriction represents a powerful approach to preventing the pro-inflammatory state that is developed by many older people,” said Ferrucci.

Source: NIH/National Institute on Aging

Humans Naturally Moderate their Intake of Energy-rich Meals

A hamburger
Photo by Ilya Mashkov on Unsplash

A new study has shown that, instead of overeating, humans moderate the size of energy-rich meals they consume, suggesting people are smarter eaters than previously thought.

The findings, published in The American Journal of Clinical Nutrition, revisit the long-held belief that humans don’t notice the energy content of the foods they consume, making them prone to eating the same quantity of food by weight, regardless of it being energy-rich or energy-poor.

The study, led by the University of Bristol, challenges a common view among researchers that people tend to overconsume high-energy foods.

Previous studies manipulated the energy content of foods or meals to create low- and high-energy versions. In those studies, people were not informed of which version they ate, and findings showed they tended to eat meals of the same weight, resulting in greater calorie intake with the high-energy version.

“For years we’ve believed that humans mindlessly overeat energy-rich meals. Remarkably, this study indicates a degree of nutritional intelligence whereby humans manage to adjust the amount they consume of high-energy density options,” said lead author Annika Flynn, Doctoral Researcher in Nutrition and Behaviour at the University of Bristol.

Rather than artificially manipulating the calories in single foods, this study looked at data from a trial using a normal, everyday meals with different energy densities, such as a chicken salad sandwich with fig roll biscuits or porridge with blueberries and almonds. The trial involved 20 healthy adults who temporarily lived in a hospital ward where they were served a variety of meals for four weeks.

The international team of researchers calculated the calories, grams, and energy density (calories per gram) for every meal each participant consumed. They found that meal calorie intake increased with energy density in energy-poor meals as previous observations with artificially manipulated foods also found. Surprisingly, with greater energy density a turning point was observed whereby people start to respond to increases in calories by reducing the size of the meals they consume. This suggests a previously unrecognised sensitivity to the energy content of the meals people were eating.

As this finding was based on data from a small, highly-controlled trial, the researchers next investigated whether the general population followed this pattern eating freely. Using data from the UK National Diet and Nutrition Survey, researchers again found meal calorie intake increased with energy density in meals which were energy-poor and then decreased in energy-rich meals. Importantly, for this turning point pattern to occur, participants would have needed to consume smaller meals, by weight, of the more energy-rich meals.

Annika said: “For instance, people ate smaller portions of a creamy cheese pasta dish, which is an energy-rich meal, than a salad with lots of different vegetables which is relatively energy-poor.”

This research sheds new light on human eating behaviour, specifically an apparent subtle sensitivity to calories in energy-rich meals.

Co-author Jeff Brunstrom, Professor of Experimental Psychology, said: “This research gives added weight to the idea humans aren’t passive overeaters after all, but show the discerning ability to moderate how much of an energy-rich meal they consume.

“This work is particularly exciting as it reveals a hidden complexity to how humans interact with modern energy-rich foods, something we’ve been referring to as ‘nutritional intelligence’. What this tells us is we don’t seem to passively overconsume these foods and so the reason why they are associated with obesity is more nuanced than previously thought. For now, at least this offers a new perspective on a longstanding issue and it opens the door to a range of important new questions and avenues for future research.”

Source: University of Bristol