Tag: Alzheimer's disease

Shrinking Brain Volume may be Reflective of Alzheimer’s Treatment Efficacy

Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH

Brain shrinkage observed in people receiving drugs for Alzheimer’s treatment actually reflects their efficacy, suggests to a new study from University College London. The researchers analysed data from a dozen different trials of amyloid-targeting immunotherapy – including lecanemab, recently approved in the UK for Alzheimer’s treatment but not yet used by the NHS.

While brain shrinkage is usually an undesirable outcome, the team found that the excess volume loss was consistent across studies and correlated with how effective the therapy was in removing amyloid and was not associated with harm.

As a result, the researchers believe that the removal of amyloid plaques, which are abundant in Alzheimer’s patients, could account for the observed brain volume changes. And, as such, the volume loss should not be a cause for concern.

To describe this phenomenon, the research team coined a new phrase: “amyloid-removal-related pseudo-atrophy” or ARPA. The team published their findings in published in Lancet Neurology.

Senior author and Director of the UCL Dementia Research Centre, Professor Nick Fox said: “Amyloid-targeting monoclonal antibodies represent a significant therapeutic breakthrough in the treatment of Alzheimer’s disease. These agents work by binding to and triggering the removal of amyloid plaques from the brain.

“One area of controversy has been the effect of these agents on brain volumes. Brain volume loss is a characteristic feature of Alzheimer’s disease, caused by progressive loss of neurons.

“Amyloid immunotherapy has consistently shown an increase in brain volume loss – leading to concerns in the media and medical literature that these drugs could be causing unrecognised toxicity to the brains of treated patients.

“However, based on the available data, we believe that this excess volume change is an anticipated consequence of the removal of pathologic amyloid plaques from the brain of patients with Alzheimer’s disease.”

In August, the Medicines and Healthcare Products Regulatory Agency (MHRA) licensed lecanemab, for use in the early stages of Alzheimer’s disease in the UK *.

The drug works by targeting beta amyloid – a protein that builds up in the brains of people with Alzheimer’s disease and is thought to be the triggering event leading to neuronal dysfunction and cell death.

The National Institute for Health and Care Excellence (NICE) that decide whether drugs should be made available on the NHS have published draft guidance advising that the benefits of lecanemab are too small to justify the cost to the NHS. However, the decision will be reviewed following a public consultation and a second independent committee meeting later this year.

Source: University College London

A New Era of Treating Neurological Diseases at the Blood-brain-immune Interface

This is a pseudo-colored image of high-resolution gradient-echo MRI scan of a fixed cerebral hemisphere from a person with multiple sclerosis. Credit: Govind Bhagavatheeshwaran, Daniel Reich, National Institute of Neurological Disorders and Stroke, National Institutes of Health

The question of what causes complex neurological diseases such as Alzheimer’s or multiple sclerosis continues to confound scientists and doctors, with the unknowns standing in the way of early diagnoses and effective treatments.

Even among identical twins who share the same genetic risk factors, one may develop a particular neurological disease while the other does not.

That’s because unlike diseases such as cystic fibrosis or sickle-cell anaemia, which are caused by a single gene, most neurological disorders are associated with many, sometimes hundreds, of rare genetic variants. And on their own, these variants can’t predict who will develop disease, as neurological conditions are also strongly influenced by environmental factors and vascular risks such as high blood pressure, aging, heart disease, or obesity.

But there’s one often-overlooked thread that connects most neurological diseases, says Katerina Akassoglou, PhD, a senior investigator at Gladstone Institutes: They’re marked by a toxic immune reaction caused by blood that leaks into the brain through damaged blood vessels.

“Interactions between the brain, blood vessels, and the immune system are a common thread in the development and progression of many neurological diseases that have been traditionally viewed as very different conditions,” says Akassoglou. “Knowing that leaked blood is a key driver of brain inflammation, we can now approach these diseases from a different angle.”

She and her collaborators share their insights on this topic in a commentary article published in Cell’s 50th anniversary “Focus on Neuroscience” issue. 

Neutralising the Culprit

Akassoglou and her lab have long investigated how blood that leaks into the brain triggers neurologic diseases, essentially by hijacking the brain’s immune system and setting off a cascade of harmful often-irreversible effects that result in damaged neurons.

One blood protein in particular, fibrin, normally involved in blood coagulation, is responsible for setting off this detrimental cascade. The process has been observed in conditions as diverse as Alzheimer’s, traumatic brain injury, multiple sclerosis, premature birth, and even COVID-19. However, Akassoglou and her team found that the process could be prevented or interrupted by “neutralising” fibrin to deactivate its toxic properties – an approach that appears to protect against many neurological diseases when tested in animal models.

“As a first step, we know that neutralizing fibrin reduces the burden posed by vascular dysfunction,” Akassoglou says. Regardless of what initially caused the blood leaks, be it a head injury, autoimmunity, genetic mutations, brain amyloid or infection, neutralizing fibrin appears to be protective in multiple animal models of disease.

The scientists previously developed a drug, a therapeutic monoclonal antibody, that specifically targets fibrin’s inflammatory properties without affecting its essential role in blood coagulation. This fibrin-targeting immunotherapy has shown, in mice, to protect from multiple sclerosis and Alzheimer’s, and to treat neurological effects of COVID-19. A humanized version of this first-in-class fibrin immunotherapy is already in Phase 1 safety clinical trials by Therini Bio, a biotech company launched to advance discoveries from Akassoglou’s lab.

A New Era of Brain Research

In the Cell commentary, Akassoglou and her colleagues make the case that seemingly disparate neurological diseases must be viewed differently in light of new research on the blood-brain-immune interface.

They say that in the coming decade, scientific breakthroughs will emerge from collaborative networks of immunologists, neuroscientists, haematologists, geneticists, computer scientists, physicists, bioengineers, drug developers, and clinical researchers. These partnerships, forged across academia, industry, and foundations, will catalyse innovation in drug discovery and transform medical practice for neurological diseases.

“This is a new opportunity for drug discovery that goes beyond addressing genes alone or environmental factors alone,” Akassoglou says. “To usher in this new era, we must leverage new technologies and embrace an interdisciplinary approach that accounts for the important roles of immune and vascular systems in neurodegeneration.”

Source: Gladstone Institutes

Polypharmacy Negatively Impacts Older Adults with Dementia

Photo by Kampus Production

Over 30% of older adults take five or more medications daily, which is termed polypharmacy. It is associated with poor health outcomes like falls, medication interactions, hospitalisations and even death. Multiple chronic conditions in older adults increases the risk of polypharmacy. While polypharmacy is more common in older adults with Alzheimer’s disease and related dementias, there is little research examining the impact on symptoms, health outcomes and physical function.

Researchers from Drexel University’s College of Nursing and Health Professions recently published a study in Biological Research For Nursing examining symptoms, health outcomes and physical function over time in older adults with and without Alzheimer’s disease and related dementias and polypharmacy.

Led by Martha Coates, PhD, the research team found that individuals who are experiencing polypharmacy and have Alzheimer’s disease and related dementias experience more symptoms, falls, hospitalisations, mortality and had lower physical function – indicating that polypharmacy can also negatively impact quality of life for older adults with Alzheimer’s disease and related dementias.

“The cut-off of point of five or more medications daily has been associated with adverse health outcomes in previous research, and as the number of medications increase the risk of adverse drug events and harm increases,” said Coates.

The research team used a publicly available dataset from the National Health and Aging Trends Study – a nationally representative sample of Medicare beneficiaries in the United States from Johns Hopkins University. Since 2011, data is collected yearly to examine social, physical, technological and functional domains that are important in aging.

For this study, the research team used data from 2016 through 2019 to compare changes in symptoms, health outcomes and physical function among four groups: 1) those with Alzheimer’s disease and related dementias and polypharmacy; 2) those with Alzheimer’s disease and related dementias only; 3) those with polypharmacy only; and 4) those without either Alzheimer’s disease and related dementias or polypharmacy.

Coates explained that the researchers used analytic weights to analyse the data, which generates national estimates, making the sample of 2052 individuals representative of 12 million Medicare beneficiaries in the US, increasing the generalisability of the findings.

“We found that older adults with Alzheimer’s disease and related dementias and polypharmacy experienced more unpleasant symptoms, increased odds of falling, being hospitalised and mortality compared to those without Alzheimer’s disease and related dementias and polypharmacy,” said Coates. “They also experienced more functional decline, required more assistance with activities of daily living like eating, bathing and dressing, and were more likely to need an assistive device like a cane or walker.”

Coates noted that there are tools available to help health care providers review and manage medication regimens for older adults experiencing polypharmacy and possibly taking medications that are potentially inappropriate or no longer provide benefit. However, currently there are no specific tools like that for older adults with Alzheimer’s disease and related dementias.

The findings from this research shed light on the negative impact polypharmacy can have on older adults with Alzheimer’s disease and related dementias. But Coates added that further research is needed to develop strategies to reduce the occurrence of polypharmacy in people with Alzheimer’s disease and related dementias.

The research team anticipates this study will help guide future analysis of the impact of specific medications on health outcomes in individuals with Alzheimer’s disease and related dementias and that it provides a foundation to support intervention development for medication optimisation in older adults with Alzheimer’s disease and related dementias and polypharmacy.

Source: Drexler University

Alzheimer’s Disease may Damage the Brain in Two Phases

Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH

Alzheimer’s disease may damage the brain in two distinct phases, based on new research funded by the National Institutes of Health (NIH) using sophisticated brain mapping tools. According to researchers who discovered this new view, the first, early phase happens slowly and silently – before people experience memory problems – harming just a few vulnerable cell types. In contrast, the second, late phase causes damage that is more widely destructive and coincides with the appearance of symptoms and the rapid accumulation of plaques, tangles, and other Alzheimer’s hallmarks.

“One of the challenges to diagnosing and treating Alzheimer’s is that much of the damage to the brain happens well before symptoms occur. The ability to detect these early changes means that, for the first time, we can see what is happening to a person’s brain during the earliest periods of the disease,” said Richard J. Hodes, MD, director, NIH National Institute on Aging. “The results fundamentally alter scientists’ understanding of how Alzheimer’s harms the brain and will guide the development of new treatments for this devastating disorder.”

Scientists analysed the brains of 84 people, and the results, published in Nature Neuroscience, suggest that damage to one type of cell, called an inhibitory neuron, during the early phase may trigger the neural circuit problems that underlie the disease. Additionally, the study confirmed previous findings about how Alzheimer’s damages the brain and identified many new changes that may happen during the disease.

Specifically, the scientists used advanced genetic analysis tools to study the cells of the middle temporal gyrus, a part of the brain that controls language, memory and vision. The gyrus has been shown to be vulnerable to many of the changes traditionally seen during Alzheimer’s. It is also a part of the brain that researchers have thoroughly mapped for control donors. By comparing control donor data with that from people who had Alzheimer’s, the scientists created a genetic and cellular timeline of what happens throughout the disease.

Traditionally, studies have suggested that the damage caused by Alzheimer’s happens in several stages characterized by increasing levels of cell death, inflammation and the accumulation of proteins in the form of plaques and tangles. In contrast, this study suggests that the disease changes the brain in two “epochs” – or phases – with many of the traditionally studied changes happening rapidly during the second phase. This coincides with the appearance of memory problems and other symptoms.

The results also suggest that the earliest changes happen gradually and “quietly” in the first phase before any symptoms appear. These changes include slow accumulation of plaques, activation of the brain’s immune system, damage to the cellular insulation that helps neurons send signals and the death of cells called somatostatin (SST) inhibitory neurons.

The last finding was surprising to the researchers. Traditionally, scientists have thought that Alzheimer’s primarily damages excitatory neurons, which send activating neural signals to other cells. Inhibitory neurons send calming signals to other cells. The paper’s authors hypothesised how loss of SST inhibitory neurons might trigger the changes to the brain’s neural circuitry that underlie the disease.

Recently, a separate NIH-funded brain mapping study by researchers at MIT found that a gene called REELIN may be associated with the vulnerability of some neurons to Alzheimer’s. It also showed that star-shaped brain cells called astrocytes may provide resilience to or resist the harm caused by the disease.

Researchers analysed brains that are part of the Seattle Alzheimer’s Disease Brain Cell Atlas, which is designed to create a highly detailed map of the brain damage that occurs during the disease. The project was led by Mariano I. Gabitto, PhD, and Kyle J. Travaglini, PhD, from the Allen Institute, Seattle. The scientists used tools – developed as part of the NIH’s BRAIN Initiative – Cell Census Network – to study more than 3.4 million brain cells from donors who died at various stages of Alzheimer’s disease.

“This research demonstrates how powerful new technologies provided by the NIH’s BRAIN Initiative are changing the way we understand diseases like Alzheimer’s. With these tools, scientists were able to detect the earliest cellular changes to the brain to create a more complete picture of what happens over the entire course of the disease,” said John Ngai, Ph.D., director of The BRAIN Initiative®. “The new knowledge provided by this study may help scientists and drug developers around the world develop diagnostics and treatments targeted to specific stages of Alzheimer’s and other dementias.”

Source: NIH/National Institute on Aging

Over 100 Key Alzheimer’s Papers Found To Have Suspicious Data

Photo by National Cancer Institute on Unsplash

An investigation by Science has shown that over 100 key papers on Alzheimer’s research have used falsified data. The papers all have a common author – veteran neuropathologist Eliezer Masliah, a key researcher at the National Institute on Aging (NIA), typically as first or last author.

The investigation has found that scores of Masliah’s lab studies at the University of California San Diego (UCSD) and NIA are riddled with apparently falsified Western blots (images used to show the presence of proteins) and micrographs of brain tissue. Numerous images seem to have been inappropriately reused within and across papers, sometimes published years apart in different journals, under supposedly different experimental conditions.

At UCSD, Masliah had amassed decades of experience researching Alzheimer’s and Parkinson’s disease, amassing 800 papers. Some important topics in them, such as alpha-synuclein (a protein linked to both diseases), continue to have great influence. The US Congress had released a flood of funding for Alzheimer’s research, US$2.6 billion for last year’s budget, far outstripping that for the rest of the NIA, and Masliah was an ideal choice for its neuroscience division director. This was a position which was enormously influential for Alzheimer’s research in the US as well as internationally, allowing him to fund selected research over and above others with better scores form peer-review.

One of the drugs being developed based on his work is prasinezumab, which failed to show benefit over placebo in a trial of 316 Parkinson’s patients – but resulting in a host of adverse effects, though none serious. The drug was based on an idea by Masliah and another scientist (whose papers were also seemingly doctored) that a vaccine-like approach could cause the body to create antibodies against harmful precursors in both Parkinson’s and Alzheimer’s.

Questions began to be raised about his research two years ago. These were assessed by a team of forensic analysts and a neuroscientist, who concluded, “In our opinion, this pattern of anomalous data raises a credible concern for research misconduct and calls into question a remarkably large body of scientific work.” They acknowledge that accidental duplication is a possibility, and that images can acquire artefacts resembling improper manipulation during the publication process.

Columbia University neurobiologist Mu Yang used specialised software to detect similarities and alterations in images. She had previously worked with the team investigating manipulation in Alzheimer’s and stroke data. In her analysis, duplicated sections in certain Western blots that had been “seamlessly blended” quickly floated into view, she said. “It tells me someone put a lot of thought and effort into the image … and usually indicates something is very wrong.”

A team of 11 neuroscientists was less charitable when they viewed the images. Samuel Gandy, a prominent neurologist at the Mount Sinai Alzheimer’s Disease Research Center said that he was “floored” by what he saw, noting that even a “bus driver” could see that two images of a mitochondrion published two years apart were identical. “Hundreds of images,” he said in a video interview. “There had to have been ongoing manipulation for years.”

In response to this latest dossier, the NIH issued a statement stating that there was a finding of “research misconduct” for Masliah over reuse of figures in two papers, further stating that Masliah no longer serves as NIA’s neuroscience division director. The NIH stated that it had started its own investigation in 2023.

Source: Science

Treatment with Dopamine Alleviates Symptoms in Alzheimer’s Disease

Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH

A new way to combat Alzheimer’s disease has been discovered by Takaomi Saido and his team at the RIKEN Center for Brain Science (CBS) in Japan. Using mouse models, the researchers found that treatment with dopamine could alleviate physical symptoms in the brain as well as improve memory. Published in Science Signaling, the study examines dopamine’s role in promoting the production of neprilysin, an enzyme that can break down the harmful plaques in the brain that are the hallmark of Alzheimer’s disease. If demonstrated in human clinical trials, it could lead to a fundamentally new way to treat the disease.

The formation of hardened plaques around neurons is one of the earliest signs of Alzheimer’s disease, often beginning decades before behavioural symptoms such as memory loss are detected. These plaques are formed from pieces of the peptide beta-amyloid that accumulate over time. In the new study, Saido’s team at RIKEN CBS focuses on the enzyme neprilysin because previous experiments showed that genetic manipulation that produces excess neprilysin in the brain (a process called upregulation) resulted in fewer beta-amyloid plaques and improved memory in mice.

Neprilysin by itself cannot be a medication as it cannot enter the brain from the blood stream, so the researchers screened molecules to determine which ones can naturally upregulate neprilysin in the correct parts of the brain. The team’s previous research led them to narrow down the search to hormones produced by the hypothalamus, and they discovered that applying dopamine to brain cells cultured in a dish yielded increased levels of neprilysin and reduced levels of free-floating beta-amyloid.

Now the serious experiments began. Using a DREADD system, they inserted tiny designer receptors into the dopamine producing neurons of the mouse ventral tegmental area. By adding a matching designer drug to the mice’s food, the researchers were able to continuously activate those neurons, and only those neurons, in the mouse brains. As in the dish, activation led to increased neprilysin and decreased levels of free-floating beta-amyloid, but only in the front part of the mouse brain. But could the treatment remove plaques? Yes. The researchers repeated the experiment using a special mouse model of Alzheimer’s disease in which the mice develop beta-amyloid plaques. Eight weeks of chronic treatment resulted in significantly fewer plaques in the prefrontal cortex of these mice.

The DREADD system is an incredible system for precise manipulation of specific neurons. But it is not very useful for human clinical settings. The final experiments tested the effects of L-DOPA treatment. L-DOPA is a dopamine precursor molecule often used to treat Parkinson’s disease because it can enter the brain from the blood, where it is then converted into dopamine. Treating the model mice with L-DOPA led to increased neprilysin and decreased beta-amyloid plaques in both frontal and posterior parts of the brain. Model mice treated with L-DOPA for three months also performed better on memory tests than untreated model mice.

Tests showed that neprilysin levels naturally decreased with age in normal mice, particularly in the frontal part of the brain, perhaps making it a good biomarker for preclinical or at-risk Alzheimer’s disease diagnoses. How dopamine causes neprilysin levels to increase remains unknown, and is the next research topic for Saido’s group.

“We have shown that L-DOPA treatment can help reduce harmful beta-amyloid plaques and improve memory function in a mouse model of Alzheimer’s disease,” explains Watamura Naoto, first author of the study. “But L-DOPA treatment is known to have serious side effects in patients with Parkinson’s disease. Therefore, our next step is to investigate how dopamine regulates neprilysin in the brain, which should yield a new preventive approach that can be initiated at the preclinical stage of Alzheimer’s disease.”

Source: RIKEN

New Paper Suggests that MS Protects Against Alzheimer’s Disease

Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH

People with multiple sclerosis (MS) are far less likely than those without the condition to have the molecular hallmarks of Alzheimer’s disease, according to a paper published in the Annals of Neurology.

The study from Washington University School of Medicine in St. Louis, suggests a new direction for researching Alzheimer’s treatments, said Matthew Brier, MD PhD, an assistant professor of neurology and radiology and the study’s first author.

“Our findings imply that some component of the biology of multiple sclerosis, or the genetics of MS patients, is protective against Alzheimer’s disease,” Brier said. “If we could identify what aspect is protective and apply it in a controlled way, that could inform therapeutic strategies for Alzheimer’s disease.”

A collaboration between WashU Medicine experts in Alzheimer’s and MS, the study was prompted by a suspicion Brier’s mentor and collaborator Anne Cross, MD, had developed over decades of treating patients with MS, an immune-mediated disease that attacks the central nervous system. Although her patients were living long enough to be at risk of Alzheimer’s or had a family history of the neurodegenerative disease, they weren’t developing the disease.

“I noticed that I couldn’t find a single MS patient of mine who had typical Alzheimer’s disease,” said Cross, the Manny and Rosalyn Rosenthal and Dr. John Trotter MS Center Chair in Neuroimmunology. “If they had cognitive problems, I would send them to the memory and aging specialists here at the School of Medicine for an Alzheimer’s assessment, and those doctors would always come back and tell me, ‘No, this is not due to Alzheimer’s disease.’”

Cognitive impairment caused by MS can be confused with symptoms of Alzheimer’s disease; Alzheimer’s can be confirmed with blood and other biological tests.

To confirm Cross’ observation, the research team used a new, FDA-approved blood test that was developed by Washington University researchers. Known as PrecivityAD2, the blood test is highly effective at predicting the presence of amyloid plaques in the brain. Such plaques are an indicator of Alzheimer’s disease and previously only could be verified with brain scans or spinal taps.

Brier, Cross and their colleagues recruited 100 patients with MS to take the blood test, 11 of whom also underwent PET scans at the School of Medicine’s Mallinckrodt Institute of Radiology. Their results were compared with the results from a control group of 300 individuals who did not have MS but were similar to those with MS in age, genetic risk for Alzheimer, and cognitive decline.

“We found that 50% fewer MS patients had amyloid pathology compared to their matched peers based on this blood test,” Brier said. This finding supported Cross’ observation that Alzheimer’s appeared to be less likely to develop among those with MS. It is not clear how amyloid accumulation is linked to the cognitive impairment typical of Alzheimer’s, but the accumulation of plaques is generally understood to be the first event in the biological cascade that leads to cognitive decline.

The researchers also found that the more typical the patient’s MS history was, in terms of age of onset, severity and overall disease progression, the less likely they were to have amyloid plaque accumulation in that patient’s brain compared with those with atypical presentations of MS. This suggests there is something about the nature of MS itself that is protective against Alzheimer’s disease, which Brier and Cross are planning to investigate.

MS patients generally have multiple flare-ups of the illness over the course of their lifetimes. During these flare-ups, the immune system attacks the central nervous system, including within the brain. It’s possible that this immune activity also reduces amyloid plaques, the researchers said.

“Perhaps when the Alzheimer’s disease amyloid pathology was developing, the patients with MS had some degree of inflammation in their brains that was spurred by their immune responses,” Brier said. Referring to work by co-author David M. Holtzman, MD, Brier noted that activated microglia, which are part of the brain’s immune response in MS, have been shown to clear amyloid from the brain in animal models.

Brier and Cross have begun the next steps of this research, both to tease out the possible human genetics involved, as well as to test amyloid plaque development in animal models representing MS.

Source: Washington University School of Medicine

Alzheimer’s Drug may Slow Cognitive Decline in Dementia with Lewy Bodies

Created with Gencraft. CC4.0

Dementia with Lewy bodies is a type of dementia that is similar to both Alzheimer’s disease and Parkinson’s disease but studies on long-term treatments are lacking. A new study from Karolinska Institutet, published in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, highlights the potential cognitive benefits of cholinesterase inhibitor treatment.

Lewy body disease, which includes dementia with Lewy bodies (DLB) and Parkinson’s disease with and without dementia, is the second most common neurodegenerative disorder, following Alzheimer’s disease. 

DLB accounts for approximately 10–15% of dementia cases and is characterised by changes in sleep, behaviour, cognition, movement, and regulation of automatic bodily functions. 

“There are currently no approved treatments for DLB, so doctors often use drugs for Alzheimer’s disease, such as cholinesterase inhibitors and memantine, for symptom relief,” says Hong Xu, assistant professor at the Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and first author of the paper. “However, the effectiveness of these treatments remains uncertain due to inconsistent trial results and limited long-term data.” 

In the current study, researchers have examined the long-term effects of cholinesterase inhibitors (ChEIs) and memantine compared with no treatment for up to ten years in 1,095 patients with DLB.

Slower cognitive decline

They found that ChEIs may slow down cognitive decline over five years compared to memantine or no treatment. ChEIs were also associated with a reduced risk of death in the first year after diagnosis. 

“Our results highlight the potential benefits of ChEIs for patients with DLB and support updating treatment guidelines,” says Maria Eriksdotter, professor at the Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and last author of the paper.  

Due to the study’s observational nature, no conclusions can be drawn about causality. The researchers did not have data on patient lifestyle habits, frailty, blood pressure, and Alzheimer’s disease co-pathology, which may have influenced the findings. Another limitation of the study is that it remains challenging to diagnose DLB accurately. 

Source: Karolinska Institutet

Brain’s Support Cells Contribute to Alzheimer’s Disease by Producing Toxic Peptide

Targeting oligodendrocytes could help reduce amyloid beta production

Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH

Oligodendrocytes are an important source of amyloid beta (Aβ) and play a key role in promoting neuronal dysfunction in Alzheimer’s disease (AD), according to a study published July 23, 2024 in the open-access journal PLOS Biology by Rikesh Rajani and Marc Aurel Busche from the UK Dementia Research Institute at University College London, and colleagues.

AD is a devastating neurodegenerative disorder affecting millions of people worldwide. Accumulation of Aβ – peptides consisting of 36 to 43 amino acids – is an early critical hallmark of the disease. Recent clinical trials demonstrating a slowing of cognitive and functional decline in individuals with AD who are treated with anti-Aβ antibodies reinforce the important role of Aβ in the disease process. Despite the key cellular effects of Aβ and its essential role in AD, the traditional assumption that neurons are the primary source of toxic Aβ in the brain has remained untested.

In the study, Rajani and Busche showed that non-neuronal brain cells called oligodendrocytes produce Aβ. They further demonstrated that selectively suppressing Aβ production in oligodendrocytes in an AD mouse model is sufficient to rescue abnormal neuronal hyperactivity. The results provide evidence for a critical role of oligodendrocyte-derived Aβ for early neuronal dysfunction in AD. Collectively, the findings suggest that targeting oligodendrocyte Aβ production could be a promising therapeutic strategy for treating AD.

According to the authors, the functional rescue is remarkable given the relatively modest reduction in plaque load that results from blocking oligodendrocyte Aβ production, while blocking neuronal Aβ production leads to a near elimination of plaques – another hallmark of the disease. This small contribution of oligodendrocytes to plaque load could suggest that a main effect of oligodendrocyte-derived Aβ is to promote neuronal dysfunction.

Together with the data showing an increased number of Aβ-producing oligodendrocytes in deeper cortical layers of the brains of individuals with AD, these results indicate that oligodendrocyte-derived Aβ plays a pivotal role in the early impairment of neuronal circuits in AD, which has important implications for how the disease progresses and is treated. The increased number of oligodendrocytes in human AD brains also raises the intriguing possibility that these cells could potentially offset reduced Aβ production due to neuronal loss as the disease progresses.

The authors add, “Our study challenges the long-held belief that neurons are the exclusive source of amyloid beta in the brain, one of the key toxic proteins that builds up in Alzheimer’s Disease. In fact, we show that oligodendrocytes, the myelinating cells of the central nervous system, can also produce significant amounts of amyloid beta which impairs neuronal function, and suggests that targeting these cells may be a promising new strategy to treat Alzheimer’s Disease.”

Provided by PLOS

Those with Alzheimer’s Disease History on Mother’s Side have Increased Amyloid Proteins

Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH

A new study by investigators from Mass General Brigham suggests that whether a person inherits risk of Alzheimer’s disease from their mother or father influences risk of biological changes in the brain that lead to disease. By evaluating 4400 cognitively unimpaired adults ages 65–85, the team found those with a history of Alzheimer’s disease (AD) on either their mother’s side or both parents’ sides had increased amyloid in their brains. Their results are published in JAMA Neurology.

“Our study found if participants had a family history on their mother’s side, a higher amyloid level was observed,” said senior corresponding author Hyun-Sik Yang, MD, a neurologist at Mass General Brigham.

Yang said that previous smaller studies have investigated the role family history plays in Alzheimer’s disease. Some of those studies suggested maternal history represented a higher risk of developing Alzheimer’s, but the group wanted to revisit the question with cognitively normal participants and access to a larger clinical trial data set.

The team examined the family history of older adults from the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s (A4) study, a randomized clinical trial aimed at AD prevention. Participants were asked about memory loss symptom onset of their parents. Researchers also asked if their parents were ever formally diagnosed or if there was autopsy confirmation of Alzheimer’s disease.

“Some people decide not to pursue a formal diagnosis and attribute memory loss to age, so we focused on a memory loss and dementia phenotype,” Yang said.

Researchers then compared those answers and measured amyloid in participants. They found maternal history of memory impairment at all ages and paternal history of early-onset memory impairment was associated with higher amyloid levels in the asymptomatic study participants. Researchers observed that having only a paternal history of late-onset memory impairment was not associated with higher amyloid levels.

“If your father had early onset symptoms, that is associated with elevated levels in the offspring,” said Mabel Seto, PhD, first author and a postdoctoral research fellow in the Department of Neurology at the Brigham. “However, it doesn’t matter when your mother started developing symptoms – if she did at all, it’s associated with elevated amyloid.”

Seto works on other projects related to sex differences in neurology. She said the results of the study are fascinating because Alzheimer’s tends to be more prevalent in women. “It’s really interesting from a genetic perspective to see one sex contributing something the other sex isn’t,” Seto said. She also noted the findings were not affected by whether study participants were biologically male or female.

Yang noted one limitation of the study is some participants’ parents died young, before they could potentially develop symptoms of cognitive impairment. He said social factors like access to resources and education may have also played a role in when someone acknowledged cognitive impairment and if they were ever formally diagnosed.

“It’s also important to note a majority of these participants are non-Hispanic white,” Seto added. “We might not see the same effect in other races and ethnicities.”

Seto said the next steps are to expand the study to look at other groups and examine how parental history affects cognitive decline and amyloid accumulation over time and why DNA from the mother plays a role.

Reisa Sperling, MD, a co-author on the paper, principal investigator of the A4 Study and a neurologist at Mass General Brigham, said the findings could be used soon in clinical translation.

“This work indicates that maternal inheritance of Alzheimer’s disease may be an important factor in identifying asymptomatic individuals for ongoing and future prevention trials,” Sperling said.

Source: Mass General Brigham