Understanding Mechanisms of Antibiotic Resistance
If nothing is done, the problem of multidrug-resistant bacterial infections could be catastrophic by 2050, killing nearly 10 million people each year, according to experts’ predictions.
One person seeking solutions is Joseph Boll, assistant professor of biology at The University of Texas at Arlington, to identify and inhibit the defense mechanisms of Acinetobacter baumannii, a common pathogen in hospitals and clinical settings.
A. baumannii can cause infections in the blood, urinary tract and lungs, or in wounds in other parts of the body. Antibiotics are usually used to treat the infections, but many strains are resistant, including drugs of last resort, carbapenems.
“In previous research, we discovered that when A. baumannii experiences stress, such as antibiotic treatment, it modifies its cell envelope to tolerate the antibiotic for extended periods of time,” Prof Boll said. “Specific modifications allow the bacteria to survive long enough to acquire true antibiotic resistance, which can lead to antibiotic treatment failure. This can happen within 24 hours of antibiotic exposure.”
His team expects to identify what adaptations in the cell envelope allow the pathogen to survive in the presence of antibiotics and how survival contributes to the acquisition of true resistance.
In a recent study published in mBio, the team demonstrated that two LD-transpeptidase enzymes remodel A. baumannii’s cell envelope to promote its survival when under stress, such as the kind experienced during antibiotic treatment.
With this breakthrough, Hannah Bovermann, a senior double-major in biology and microbiology, is dissecting the genes that encode the bacteria’s LD-transpeptidases to learn what stress conditions induce their activation. She isolates the LD-transpeptidase promoters, the part of the DNA that controls when other parts of DNA are used, and glues it to a different gene whose function is to turn the bacterial cell blue. When the cell is in an environment where it wants to modify its cell envelope to protect itself, it turns blue, letting her observe the timing of the change.
To provoke this reaction, she administers antibiotics, experiments with various temperature changes, exposes the cell to pH gradients and subjects the cell to nutrient deprivations.
“Each response brings us closer to an understanding of how cell envelope modifications keep the bacterial cell intact in stress,” Bovermann said.
The researchers hope to find new targets on the cell surface for antibiotics to attack, strengthening existing medications’ potency against A. baumannii infections.
Clinicians have been pushed into using combinatorial therapies, where multiple drugs are employed to treat bacterial infections, but even those methods are becoming increasingly ineffective, Prof Boll said.
“It has become a game. Researchers discover a new antimicrobial, then bacteria become resistant to it. We are running out of options,” Prof Boll said. “Bacterial resistance is quickly outpacing new antibiotic development.”
Source: EurekAlert!