Tag: 11/3/24

How Gamma Rhythm Light and Sound Strips Amyloid in Alzheimer’s Mouse Models

Photo by Fakurian Design on Unsplash

Studies at MIT and elsewhere are producing mounting evidence that light flickering and sound clicking at the gamma brain rhythm frequency of 40Hz can reduce Alzheimer’s disease (AD) progression and treat symptoms in human volunteers as well as lab mice. In a new study in Nature using a mouse model of the disease, researchers at The Picower Institute for Learning and Memory of MIT reveal a key mechanism that may contribute to these beneficial effects: clearance of amyloid proteins, a hallmark of AD pathology, via the brain’s glymphatic system, a recently discovered “plumbing” network parallel to the brain’s blood vessels.

“Ever since we published our first results in 2016, people have asked me how does it work? Why 40Hz? Why not some other frequency?” said study senior author Li-Huei Tsai, Professor of Neuroscience at Picower. “These are indeed very important questions we have worked very hard in the lab to address.”

The new paper describes a series of experiments, led by Mitch Murdock when he was a Brain and Cognitive Sciences doctoral student at MIT, showing that when sensory gamma stimulation increases 40 Hz power and synchrony in the brains of mice, that prompts a particular type of neuron to release peptides. The study results further suggest that those short protein signals then drive specific processes that promote increased amyloid clearance via the glymphatic system.

“We do not yet have a linear map of the exact sequence of events that occurs,” said Murdock, who was jointly supervised by Tsai and co-author and collaborator Ed Boyden, Professor of Neurotechnology at MIT. “But the findings in our experiments support this clearance pathway through the major glymphatic routes.”

From gamma to glymphatics

Because prior research has shown that the glymphatic system is a key conduit for brain waste clearance and may be regulated by brain rhythms, Tsai and Murdock’s team hypothesised that it might help explain the lab’s prior observations that gamma sensory stimulation reduces amyloid levels in Alzheimer’s model mice.

Working with “5XFAD” mice, which genetically model Alzheimer’s, Murdock and co-authors first replicated the lab’s prior results that 40Hz sensory stimulation increases 40Hz neuronal activity in the brain and reduces amyloid levels. Then they set out to measure whether there was any correlated change in the fluids that flow through the glymphatic system to carry away wastes. Indeed, they measured increases in cerebrospinal fluid in the brain tissue of mice treated with sensory gamma stimulation compared to untreated controls. They also measured an increase in the rate of interstitial fluid leaving the brain. Moreover, in the gamma-treated mice he measured increased diameter of the lymphatic vessels that drain away the fluids and measured increased accumulation of amyloid in cervical lymph nodes, which is the drainage site for that flow.

To investigate how this increased fluid flow might be happening, the team focused on the aquaporin 4 (AQP4) water channel of astrocyte cells, which enables the cells to facilitate glymphatic fluid exchange. When they blocked APQ4 function with a chemical, that prevented sensory gamma stimulation from reducing amyloid levels and prevented it from improving mouse learning and memory. And when, as an added test they used a genetic technique for disrupting AQP4, that also interfered with gamma-driven amyloid clearance.

In addition to the fluid exchange promoted by APQ4 activity in astrocytes, another mechanism by which gamma waves promote glymphatic flow is by increasing the pulsation of neighbouring blood vessels. Several measurements showed stronger arterial pulsatility in mice subjected to sensory gamma stimulation compared to untreated controls.

One of the best new techniques for tracking how a condition, such as sensory gamma stimulation, affects different cell types is to sequence their RNA to track changes in how they express their genes. Using this method, Tsai and Murdock’s team saw that gamma sensory stimulation indeed promoted changes consistent with increased astrocyte AQP4 activity.

Prompted by peptides

The RNA sequencing data also revealed that upon gamma sensory stimulation a subset of neurons, called “interneurons,” experienced a notable uptick in the production of several peptides. This was not surprising in the sense that peptide release is known to be dependent on brain rhythm frequencies, but it was still notable because one peptide in particular, VIP, is associated with Alzheimer’s-fighting benefits and helps to regulate vascular cells, blood flow and glymphatic clearance.

Seizing on this intriguing result, the team ran tests that revealed increased VIP in the brains of gamma-treated mice. The researchers also used a sensor of peptide release and observed that sensory gamma stimulation resulted in an increase in peptide release from VIP-expressing interneurons.

But did this gamma-stimulated peptide release mediate the glymphatic clearance of amyloid? To find out, the team ran another experiment: they chemically shut down the VIP neurons. When they did so, and then exposed mice to sensory gamma stimulation, they found that there was no longer an increase in arterial pulsatility and there was no more gamma-stimulated amyloid clearance.

“We think that many neuropeptides are involved,” Murdock said. Tsai added that a major new direction for the lab’s research will be determining what other peptides or other molecular factors may be driven by sensory gamma stimulation.

Tsai and Murdock added that while this paper focuses on what is likely an important mechanism – glymphatic clearance of amyloid – by which sensory gamma stimulation helps the brain, it’s probably not the only underlying mechanism that matters. The clearance effects shown in this study occurred rather rapidly but in lab experiments and clinical studies weeks or months of chronic sensory gamma stimulation have been needed to have sustained effects on cognition.

With each new study, however, scientists learn more about how sensory stimulation of brain rhythms may help treat neurological disorders.

Source: Picower Institute at MIT

Using Fat Tissue, Researchers 3D-Print Skin that Contains Hair Precursors

AI art image created using Gencraft

Fat tissue holds the key to 3D printing layered living skin and potentially hair follicles, according to researchers who recently harnessed fat cells and supporting structures from clinically procured human tissue to precisely correct injuries in rats. The advancement could have implications for reconstructive facial surgery and even hair growth treatments for humans.

The team’s findings published in Bioactive Materials, and the team received a patent in February for the bioprinting technology it developed and used in this study.

“Reconstructive surgery to correct trauma to the face or head from injury or disease is usually imperfect, resulting in scarring or permanent hair loss,” said Ibrahim T. Ozbolat, professor of engineering science and mechanics, of biomedical engineering and of neurosurgery at Penn State, who led the international collaboration that conducted the work. “With this work, we demonstrate bioprinted, full thickness skin with the potential to grow hair in rats. That’s a step closer to being able to achieve more natural-looking and aesthetically pleasing head and face reconstruction in humans.”

While scientists have previously 3D bioprinted thin layers of skin, Ozbolat and his team are the first to intraoperatively print a full, living system of multiple skin layers, including the bottom-most layer or hypodermis. Intraoperatively refers to the ability to print the tissue during surgery, meaning the approach may be used to more immediately and seamlessly repair damaged skin, the researchers said. The top layer — the epidermis that serves as visible skin — forms with support from the middle layer on its own, so it doesn’t require printing. The hypodermis, made of connective tissue and fat, provides structure and support over the skull.

“The hypodermis is directly involved in the process by which stem cells become fat,” Ozbolat said. “This process is critical to several vital processes, including wound-healing. It also has a role in hair follicle cycling, specifically in facilitating hair growth.”

The researchers started with human adipose, or fat, tissue obtained from patients undergoing surgery at Penn State Health Milton S. Hershey Medical Center. Collaborator Dino J. Ravnic, associate professor of surgery in the Division of Plastic Surgery at Penn State College of Medicine, led his lab in obtaining the fat for extraction of the extracellular matrix to make one component of the bioink.

Ravnic’s team also obtained stem cells, which have the potential to mature into several different cell types if provided the correct environment, from the adipose tissue to make another bioink component. Each component was loaded into one of three compartments in the bioprinter. The third compartment was filled with a clotting solution that helps the other components properly bind onto the injured site.

“The three compartments allow us to co-print the matrix-fibrinogen mixture along with the stem cells with precise control,” Ozbolat said. “We printed directly into the injury site with the target of forming the hypodermis, which helps with wound healing, hair follicle generation, temperature regulation and more.”

They achieved both the hypodermis and dermis layers, with the epidermis forming within two weeks by itself.

“We conducted three sets of studies in rats to better understand the role of the adipose matrix, and we found the co-delivery of the matrix and stem cells was crucial to hypodermal formation,” Ozbolat said. “It doesn’t work effectively with just the cells or just the matrix – it has to be at the same time.”

They also found that the hypodermis contained downgrowths, the initial stage of early hair follicle formation. According to the researchers, while fat cells do not directly contribute to the cellular structure of hair follicles, they are involved in their regulation and maintenance.

“In our experiments, the fat cells may have altered the extracellular matrix to be more supportive for downgrowth formation,” Ozbolat said. “We are working to advance this, to mature the hair follicles with controlled density, directionality and growth.”

According to Ozbolat, the ability to precisely grow hair in injured or diseased sites of trauma can limit how natural reconstructive surgery may appear. He said that this work offers a “hopeful path forward,” especially in combination with other projects from his lab involving printing bone and investigating how to match pigmentation across a range of skin tones.

Source: Penn State

A Better View of Atherosclerotic Plaques with New Imaging Technique

Source: Wikimedia CC0

Researchers have developed a new catheter-based device that combines two powerful optical techniques to image atherosclerotic plaques that can build up inside the heart’s coronary arteries. By providing new details about plaque, the device could help clinicians and researchers improve treatments for preventing heart attacks and strokes.

“Atherosclerosis, leading to heart attacks and strokes, is the number one cause of death in Western societies – exceeding all combined cancer types – and, therefore, a major public health issue,” said research team member leader Laura Marcu from University of California, Davis. “Better clinical management made possible by advanced intravascular imaging tools will benefit patients by providing more accurate information to help cardiologists tailor treatment or by supporting the development of new therapies.”

In the Optica Publishing Group journal Biomedical Optics Express, researchers describe their new flexible device, which combines fluorescence lifetime imaging (FLIM) and polarisation-sensitive optical coherence tomography (PSOCT) to capture rich information about the composition, morphology and microstructure of atherosclerotic plaques. The work was a collaborative project with Brett Bouma and Martin Villiger, experts in OCT from the Wellman Center for Photomedicine at Massachusetts General Hospital.

“With further testing and development, our device could be used for longitudinal studies where intravascular imaging is obtained from the same patients at different timepoints, providing a picture of plaque evolution or response to therapeutic interventions,” said Julien Bec, first author of the paper. “This will be very valuable to better understand disease evolution, evaluate the efficacy of new drugs and treatments and guide stenting procedures used to restore normal blood flow.”

Gaining an unprecedented view

Most of what scientists know about how atherosclerosis forms and develops over time comes from histopathology studies of postmortem coronary specimens. Although the development of imaging systems such as intravascular ultrasound and intravascular OCT has made it possible to study plaques in living patients, there is still a need for improved methods and tools to investigate and characterise atherosclerosis.

To address this need, the researchers embarked on a multi-year research project to develop and validate multispectral FLIM as an intravascular imaging modality. FLIM can provide insights into features such as the composition of the extracellular matrix, the presence of inflammation and the degree of calcification inside an artery. In earlier work, they combined FLIM with intravascular ultrasound, and in this new work they combined it with PSOCT. PSOCT provides high-resolution morphological information along with birefringence and depolarisation measurements. When used together, FLIM and PSOCT provide an unprecedented amount of information on plaque morphology, microstructure and biochemical composition.

“Birefringence provides information about the plaque collagen, a key structural protein that helps with lesion stabilization, and depolarisation is related to lipid content that contributes to plaque destabilization,” said Bec. “Holistically, this hybrid approach can provide the most detailed picture of plaque characteristics of all intravascular imaging modalities reported to date.”

Getting two imaging modalities into one device

The development of multimodal intravascular imaging systems compatible with coronary catheterisation is technologically challenging. It requires flexible catheters < 1mm diameter that can operate in vessels with sharp twists and turns. A high imaging speed of around 100 frames/second is also necessary to limit cardiac motion artefacts and ensure proper imaging inside an artery.

To integrate FLIM and PSOCT into a single device without compromising the performance of either imaging modality, the researchers used optical components previously developed by Marcu’s lab and other research groups. Key to achieving high PSOCT performance was a newly designed rotary collimator with high light throughput and a high return loss, ie the ratio of power reflected back toward the light source compared to the power incident on the device. The catheter system they developed has similar dimensions and flexibility as the intravascular imaging devices that are currently in clinical use.

After testing the new system with artificial tissue to demonstrate basic functionality on well characterized samples, the researchers also showed that it could be used to measure properties of a healthy coronary artery removed from a pig. Finally, in vivo testing in swine hearts demonstrated that the hybrid catheter system’s performance was sufficient to support work toward clinical validation. These tests all showed that the FLIM-PSOCT catheter system could simultaneously acquire co-registered FLIM data over four distinct spectral bands and PSOCT backscattered intensity, birefringence and depolarization information.

Next, the researchers plan to use the intravascular imaging system to image plaques in ex vivo human coronary arteries. By comparing the optical signals acquired using the system with plaque characteristics identified by expert pathologists, they can better understand which features can be identified by FLIM-PSOCT and use this to develop prediction models. They also plan to move forward with testing in support of clinical validation of the system in patients.

Source: Optica

Pretoria High Court Judgement On COVID-19 Vaccinations

Photo by Bill Oxford on Unsplash

On 05 January 2023, the COVID Care Alliance NPC and other applicants brought an urgent court application against the South African Health Products Regulatory Authority (SAHPRA), including the President of the Republic of South Africa and others to prevent people from being vaccinated.

The applicants wanted the court to order that all COVID-19 vaccines programs must be stopped and that all COVID-19 vaccination sections in healthcare facilities in South Africa must be closed, and the effective withdrawal from circulation of the vaccines. The applicants also sought an order interdicting the approval of vaccines for emergency authorisation or registration.

On 27 February 2024, the Pretoria High Court dismissed with costs an application filed by the applicants on the grounds that the applicants do not have the right to prevent others, who do not share in their beliefs or opinions, from being vaccinated.

SAHPRA submitted evidence to the Court to show that the applicants’ attempt to prevent government from using vaccines to address the COVID-19 pandemic was misguided, and the applicants heavily relied on hearsay and speculation, as well as supported their arguments with the opinion of persons who were not experts.

Source: SAHPRA

Proposed Update to Schedule 6 of the Medicines and Related Substances Act

Photo by Kindel Media on Unsplash

By Rodney Africa, Partner, Adriano Esterhuizen, Partner & Daveraj Sauls, Associate at Webber Wentzel

The Minister of Health (the Minister) in terms of section 22A(2) of the Medicines and Related Substances Act 101 of 1965 (the Medicines Act), and on the recommendation of the South African Health Products Regulatory Authority, has invited interested persons to submit substantiated comments or representations on the proposed update of Schedule 6 to the Medicines Act.

The proposed update to Schedule 6 of the Medicines Act intends to exclude certain cannabis products containing Tetrahydrocannabinol (THC), the psychoactive compound in cannabis, from the operation of the Schedules to the Medicines Act and will, inter alia, permit the manufacturing of cannabis consumer items and products, with no limitation on the percentage of THC content, provided that the items and products have no pharmacological action or medicinal purpose. This will also allow adults to cultivate and possess cannabis in private for personal consumption, with no limitation on the percentage of THC content.

This proposed update appears to be a move away from utilising THC content as a threshold to distinguish between consumable and industrial cannabis. This shift seemingly comes in response to the growing South African market for cannabis products and aims to augment the Cannabis for Private Purposes Bill 2023 [B19 – 2020] recently passed by the National Council of Provinces and submitted to the President for his assent and signature.

Interested persons have until Thursday, 14 March 2024 to submit any substantiated comments or representations by emailing mihloti.mushwana@health.gov.za or paul.tsebe@health.gov.za.