Scientists at The University of Warwick have made a breakthrough which could help find new ways to prevent ventilator-associated pneumonia, which can affect up to 40% of hospital patients on mechanical ventilators.
Ventilator-associated pneumonia (VAP) is a common infection in ventilated patients, particularly for those with existing respiratory conditions. VAP is transmitted by pathogens, often antibiotic resistant, that form stubborn biofilms on the inside of endotracheal tubes. Up to 40% of ventilated patients in intensive care wards will develop VAP, with 10% of those patients dying as a result.
In a study recently published in Microbiology, researchers recreated hospital conditions to improve understanding of the infection. They used the same type of endotracheal tubes and created a special mucus to simulate the conditions inside a human body. Bacteria and fungi formed a biofilm on these tubes.
Dr Dean Walsh, Research Fellow, University of Warwick, said: “Our study found that the biofilms in our model were different and more complex than those usually grown in standard lab conditions, making them more realistic.
“The biofilms formed in this new model were very tough to get rid of, even with strong antibiotics, much like what happens in real patients.
“Significantly, when we combined antibiotics with enzymes that break down the biofilm’s protective slime layer, the biofilms were more successfully removed than with antibiotics alone. With the enzymes, we could halve the concentration of antibiotics needed to kill the biofilms. So, that suggests we can use our model to identify new VAP treatments that attack the slime layer.”
Dr Freya Harrison, School of Life Sciences, University of Warwick, added: “VAP is a killer, and there are currently no cost-effective ways of making the tubes harder for microbes to colonise. Our new model can help scientists develop better therapies and design special tubes that prevent biofilms, which could improve the health of patients on ventilators.”
This project was part of an international research program in antimicrobial resistance that brings together colleagues at the University of Warwick with those at Monash University in Melbourne and is supported by the Monash-Warwick Alliance.
Professor Ana Traven, co-Director of the Monash-Warwick Alliance programme in emerging superbug threats, and co-author of the study, added: “It is exciting that we could join forces with our colleagues at Warwick for this important study. Many promising new anti-infectives fail because experiments done in the laboratory do not recapitulate very well the more complex infections that occur in patients. As such, the development of laboratory models that mimic disease, such as was done in this study, is important for accelerating the discovery of credible antimicrobial therapies that have a higher chance of clinical success.”
Taza Aya’s Worker Wearable Protection device keeps airborne virus particles from reaching a workers mouth and nose with an air curtain. That air is pre-treated to kill any viruses. Image credit: Jeremy Little, Michigan Engineering
An air curtain shooting down from the brim of a hard hat can prevent 99.8% of aerosols from reaching a worker’s face. The technology, created by University of Michigan startup Taza Aya, potentially offers a new protection option for workers in industries where respiratory disease transmission is a concern.
Independent, third-party testing of Taza Aya’s device showed the effectiveness of the air curtain, curved to encircle the face, coming from nozzles at the hat’s brim. But for the air curtain to effectively protect against pathogens in the room, it must first be cleansed of pathogens itself. Previous research by the group of Taza Aya co-founder Herek Clack, U-M associate professor of civil and environmental engineering, showed that their method can remove and kill 99% of airborne viruses in farm and laboratory settings.
“Our air curtain technology is precisely designed to protect wearers from airborne infectious pathogens, using treated air as a barrier in which any pathogens present have been inactivated so that they are no longer able to infect you if you breathe them in,” Clack said. “It’s virtually unheard of – our level of protection against airborne germs, especially when combined with the improved ergonomics it also provides.”
Fire has been used throughout history for sterilisation, and while we might not usually think of it this way, it’s what’s known as a thermal plasma. Nonthermal, or cold, plasmas are made of highly energetic, electrically charged molecules and molecular fragments that achieve a similar effect without the heat. Those ions and molecules stabilize quickly, becoming ordinary air before reaching the curtain nozzles.
Taza Aya’s prototype features a backpack, weighing roughly 10 pounds (4.5kg), that houses the nonthermal plasma module, air handler, electronics and the unit’s battery pack. The handler draws air into the module, where it’s treated before flowing to the air curtain’s nozzle array.
Taza Aya’s progress comes in the wake of the COVID pandemic and in the midst of a summer when the U.S. Centers for Disease Control and Prevention have reported four cases of humans testing positive for bird flu. During the pandemic, agriculture suffered disruptions in meat production due to shortages in labour, which had a direct impact on prices, the availability of some products and the extended supply chain.
In recent months, Taza Aya has conducted user experience testing with workers at Michigan Turkey Producers in Wyoming, Michigan, a processing plant that practices the humane handling of birds. The plant is home to hundreds of workers, many of them coming into direct contact with turkeys during their work day.
To date, paper masks have been the main strategy for protecting employees in such large-scale agriculture productions. But on a noisy production line, where many workers speak English as a second language, masks further reduce the ability of workers to communicate by muffling voices and hiding facial clues.
“During COVID, it was a problem for many plants – the masks were needed, but they prevented good communication with our associates,” said Tina Conklin, Michigan Turkey’s vice president of technical services.
In addition, the effectiveness of masks is reliant on a tight seal over the mouth and noise to ensure proper filtration, which can change minute to minute during a workday. Masks can also fog up safety goggles, and they have to be removed for workers to eat. Taza Aya’s technology avoids all of those problems.
As a researcher at U-M, Clack spent years exploring the use of nonthermal plasma to protect livestock. With the arrival of COVID in early 2020, he quickly pivoted to how the technology might be used for personal protection from airborne pathogens.
In October of that year, Taza Aya was named an awardee in the Invisible Shield QuickFire Challenge – a competition created by Johnson & Johnson Innovation in cooperation with the U.S. Department of Health and Human Services. The program sought to encourage the development of technologies that could protect people from airborne viruses while having a minimal impact on daily life.
“We are pleased with the study results as we embark on this journey,” said Alberto Elli, Taza Aya’s CEO. “This real-world product and user testing experience will help us successfully launch the Worker Wearable in 2025.”
Pneumonia diagnoses are marked by pronounced uncertainty, according to an AI-based analysis of over 2 million hospital visits. The study, published in Annals of Internal Medicine, found that more than half the time, a pneumonia diagnosis made in the hospital will change from a patient’s entrance to their discharge – either because someone who was initially diagnosed with pneumonia ended up with a different final diagnosis, or because a final diagnosis of pneumonia was missed when a patient entered the hospital (not including cases of hospital-acquired pneumonia).
Understanding that uncertainty could help improve care by prompting doctors to continue to monitor symptoms and adapt treatment accordingly, even after an initial diagnosis.
Barbara Jones, MD, pulmonary and critical care physician at University of Utah Health and the first author on the study, found the results by searching medical records from more than 100 VA medical centres across the country, using AI-based tools to identify mismatches between initial diagnoses and diagnoses upon discharge from the hospital. More than 10% of all such visits involved a pneumonia diagnosis, either when a patient entered the hospital, when they left, or both.
“Pneumonia can seem like a clear-cut diagnosis,” Jones says, “but there is actually quite a bit of overlap with other diagnoses that can mimic pneumonia.” A third of patients who were ultimately diagnosed with pneumonia did not receive a pneumonia diagnosis when they entered the hospital. And almost 40% of initial pneumonia diagnoses were later revised.
The study also found that this uncertainty was often evident in doctors’ notes on patient visits; clinical notes on pneumonia diagnoses in the emergency department expressed uncertainty more than half the time (58%), and notes on diagnosis at discharge expressed uncertainty almost half the time (48%). Simultaneous treatments for multiple potential diagnoses were also common.
When the initial diagnosis was pneumonia, but the discharge diagnosis was different, patients tended to receive a greater number of treatments in the hospital, but didn’t do worse than other patients as a general rule. However, patients who initially lacked a pneumonia diagnosis, but ultimately ended up diagnosed with pneumonia, had worse health outcomes than other patients.
A path forward
The new results call into question much of the existing research on pneumonia treatment, which tends to assume that initial and discharge diagnoses will be the same. Jones adds that doctors and patients should keep this high level of uncertainty in mind after an initial pneumonia diagnosis and be willing to adapt to new information throughout the treatment process. “Both patients and clinicians need to pay attention to their recovery and question the diagnosis if they don’t get better with treatment,” she says.
Shared geographic origin between TB strain and human host could amplify risk for infection
Tuberculosis bacteria. Credit: CDC
For some forms of tuberculosis, the chances that an exposed person will get infected depend on whether the individual and the bacteria share a hometown, according to a new study comparing how different strains move through mixed populations in cosmopolitan cities.
Results of the research, led by Harvard Medical School scientists and published in Nature Microbiology, provide the first hard evidence of long-standing observations that have led scientists to suspect that pathogen, place, and human host collide in a distinctive interplay that influences infection risk and fuels differences in susceptibility to infection.
The study strengthens the case for a long-standing hypothesis in the field that specific bacteria and their human hosts likely coevolved over hundreds or thousands of years, the researchers said.
The findings may also help inform new prevention and treatment approaches for tuberculosis.
In the current analysis, believed to be the first controlled comparison of TB strains’ infectivity in populations of mixed geographic origins, the researchers custom built a study cohort by combining case files from patients with TB in New York City, Amsterdam, and Hamburg. Doing so gave them enough data to power their models.
The analysis showed that close household contacts of people diagnosed with a strain of TB from a geographically restricted lineage had a 14 percent lower rate of infection and a 45 percent lower rate of developing active TB disease compared with those exposed to a strain belonging to a widespread lineage.
The study also showed that strains with narrow geographic ranges are much more likely to infect people with roots in the bacteria’s native geographic region than people from outside the region.
The researchers found that the odds of infection dropped by 38 percent when a contact is exposed to a restricted pathogen from a geographic region that doesn’t match the person’s background, compared with when a person is exposed to a geographically restricted microbe from a region that does match their home country. This was true for people who had lived in the region themselves and for people whose two parents could each trace their heritage to the region.
This pathogen-host affinity points to a shared evolution between humans and microbes with certain biological features rendering both more compatible and fueling the risk for infection, the researchers said.
“The size of the effect is surprisingly large,” said Maha Farhat, the Gilbert S. Omenn, MD ’65, PhD Associate Professor of Biomedical Informatics in the Blavatnik Institute at HMS. “That’s a good indicator that the impact on public health is substantial.”
Why differences matter
Thanks to the growing use of genetic sequencing, researchers have observed not all circulating strains are created equal. Some lineages are widespread and responsible for much of the TB around the world, while others are prevalent only in a few restricted areas. Given that the complex nature of TB transmission in high-incidence settings where people often have multiple exposures to different lineages, researchers have not been able to compare strains under similar conditions and have been left to speculate about possible explanations for the differences between strains.
Many factors increase the risk of contracting tuberculosis from a close contact. One of the best predictors of whether a person will infect their close contacts is bacterial load, measured by a test called sputum smear microscopy, which shows how many bacteria a person carries in their respiratory system.
But the new study showed that for geographically restricted strains, whether a person has ancestors who lived where the strain is common was an even bigger predictor of infection risk than bacterial load in the sputum. In the cases analyzed in the study, this risk of common ancestry even outweighed the risk stemming from having diabetes and other chronic diseases previously shown to render people more susceptible to infection.
The findings add to a growing body of evidence of the importance of paying attention to the wide variation between different lineages of tuberculosis and to the details of how different lineages of tuberculosis interact with different host populations.
Previous studies have shown that some genetic groups of TB are more prone to developing drug resistance and that TB vaccines appear to work better in some places than others. There is also evidence that some treatment regimens might be better suited to some strains of TB than others.
“These findings emphasize how important it is to understand what makes different strains of TB behave so differently from one another, and why some strains have such a close affinity for specific, related groups of people,” said Matthias Groeschel, research fellow in biomedical informatics in Farhat’s lab at HMS; resident physician at Charité, a university hospital in Berlin; and the study’s first author.
In addition to the analysis of clinical, genomic, and public health data, the researchers also tested the ability of different strains of TB to infect human macrophages, a type of immune cell that TB hijacks to cause infection and disease. The researchers grew cells from donors from different regions. Once again, cell lines from people with ancestry that matched the native habitat of a restricted strain of tuberculosis bacteria were more susceptible to the germs than cells from people from outside the area, mirroring the results of their epidemiologic study.
Until now, most experiments of the interaction between human immune cells and TB have not compared how TB interacts with cells of hosts from different populations or places, the researchers said.
While this experiment was not designed to capture insights about the mechanism underlying the affinity between human and TB populations sharing geographic backgrounds, it highlights the importance of using multiple strains of TB and cells from diverse populations to inform treatment and prevention. It also points to the need for more basic research to understand the genomic and structural differences in how bacterial and host cells interface, the researchers said.
“It’s so important to appreciate that the great diversity of human and tuberculosis genetics can significantly impact how people and microbes respond to one another and to things like drugs and vaccines,” Farhat said. “We have to incorporate that into the way we think about the disease.”
“We’re at the very beginning of appreciating the importance of that diversity,” Groeschel said. “There’s so much more to learn about how it might impact the efficacy of drugs, vaccines, and the course that disease takes in different strains.”
Advances in gene sequencing create a new puzzle
While the closely related but distinct genetic groups of tuberculosis were discovered with more traditional methods of genotyping, the widespread use of whole genome sequencing by public health departments around the world allowed doctors and researchers to better profile TB germs and track outbreaks and drug resistance genetically.
The realization that highly localised stains didn’t spread well to other regions led researchers to speculate that regionally constrained strains were less infectious than widespread strains. Since the constrained strains persisted within their limited ranges, some researchers speculated that localised populations of the bacteria may have coevolved with their human hosts, making different human populations more susceptible to different types of TB. This could also mean, researchers hypothesised, that different strains of TB would have different susceptibility to different treatments and vaccines. For example, structural differences in the shape of the bacteria might prevent some drugs from binding effectively with bacteria from different strains.
Until recently, these hypotheses were nearly impossible to test, given the differences between cultural and environmental conditions that might affect infection rates in different communities and other parts of the world. Furthermore, the fact that the constrained stains strayed from home so rarely made it challenging to gather enough data to measure differences across strains.
Multidisciplinary science cracks the case
To overcome these obstacles, the research team collaborated with public health departments and research teams from the U.S., the Netherlands, and Germany to assemble a massive database integrating tuberculosis case reports, pathogen genetic profiles, and public health records of infection rates among close contacts. The analysis also incorporated demographic details about the social networks of infected people to assess how the different genetic lineages of tuberculosis spread in other populations. In total, the study included 5256 TB cases and 28 889 close contacts.
“This study is a great example of why it’s so important for researchers to collaborate with many different kinds of partners,” said Groeschel. “We were able to merge public health data from three big cities and use the powerful computational biology tools that we have access to in academic medicine to answer a complicated question that has important implications for public health and evolutionary biology, vaccine development, and drug research.”
Researchers in Belgium have discovered a new population of macrophages, important innate immune cells that populate the lungs after injury caused by respiratory viruses. These macrophages are instrumental in repairing the pulmonary alveoli. This groundbreaking discovery promises to revolutionise our understanding of the post-infectious immune response and opens the door to new regenerative therapies.
Respiratory viruses, typically causing mild illness, can have more serious consequences, as shown during the COVID pandemic, including severe cases requiring hospitalisation and the chronic sequelae of “long Covid.” These conditions often result in the destruction of large areas of the lungs, particularly the alveoli responsible for gas exchanges. Ineffective repair of these structures can lead to ARDS or a permanent reduction in the lungs’ ability to oxygenate blood, causing chronic fatigue and exercise intolerance.
While the role of macrophages during the acute phase of respiratory viral infections is well known, their function in the post-inflammatory period has been largely unexplored. This study by the GIGA Institute at the University of Liège reveals that atypical macrophages, characterised by specific markers and transiently recruited during the early recovery phase, play a beneficial role in regenerating pulmonary alveoli.
Led by Dr Coraline Radermecker and Prof. Thomas Marichal from the Immunophysiology Laboratory, the study was conducted by Dr Cecilia Ruscitti and benefited from the ULiège’s advanced technological platforms, including flow cytometry, fluorescence microscopy, and single-cell RNA sequencing. “Our findings provide a novel and crucial mechanism for alveolar repair by these atypical macrophages,” explains Coraline Radermecker. “We have detailed their characteristics, origin, location in the damaged lung, the signals they require to function, and their role in tissue regeneration, specifically acting on type 2 alveolar epithelial cells, the progenitors of alveolar cells.” The scientific community had overlooked these macrophages because they express a marker previously thought to be specific for another immune cell population, the neutrophils, and because they appear only briefly during the repair phase before disappearing.
“Our study highlights the reparative role of these macrophages, countering the prevailing idea that macrophages following respiratory viral infections are pathogenic,” adds Thomas Marichal. “By targeting the amplification of these macrophages or stimulating their repair functions, we could develop therapies to improve alveolar regeneration and reduce complications from serious respiratory infections and ARDS.”
To illustrate, consider the lungs as a garden damaged by a storm (viral infection). These newly discovered macrophages act like specialised gardeners who clear debris and plant new seeds, enabling the garden to regrow and regain its vitality.
In a new clinical trial, a drug commonly used to treat cystic fibrosis, dornase alfa, improved outcomes for patients with severe COVID pneumonia. The results, published in the journal eLife, also suggest that the drug could be used to treat other respiratory infections.
The study, found that the drug reduced hyper-inflammation in COVID pneumonia patients, which occurs when the body’s immune system reacts too strongly and can lead to tissue damage and death.
The next step will be to conduct larger clinical trials, with the ultimate goal of approving dornase alfa for wider use. As well as COVID, dornase alfa has the potential to treat other respiratory infections such as those caused by influenza or bacterial pneumonia, and even other lung diseases such as pulmonary fibrosis.
Since the beginning of the COVID pandemic, the proportion of SARS-CoV-2 infections that result in death has fallen, partly due to increased immunity from prior infection or vaccination, as well as improved treatments such as the steroid dexamethasone, which helps to tackle the hyper-inflammation that was a key factor in many COVID deaths. But this treatment isn’t suitable for some patients and is not always successful in severe cases.
In this study, researchers from UCL, UCLH and the Francis Crick Institute set out to assess whether dornase alfa could be used to improve outcomes for patients admitted to hospital with severe COVID pneumonia who required oxygen.
Out of a total of 39 participants, 30 were randomised to receive twice-daily treatment with nebulised dornase alfa in addition to best available care (BAC) which included dexamethasone, with nine patients randomised to BAC only.
Patients treated with dornase alfa had a 33% reduction in systemic inflammation on top of the reduction provided by dexamethasone, as measured by C-reactive protein (CRP) levels in the blood over seven days or until they were discharged from hospital.
Dr Venizelos Papayannopoulos, senior author of the study from the Francis Crick Institute, said: “Dexamethasone has been highly successful in treating patients with severe COVID-19 pneumonia and is now standard care in the UK. But it isn’t suitable for some patients, such as those with diabetes, those that do not require oxygen, and in very severe cases it may not be enough. Dornase alfa can be used to treat a wider variety of patients and gets right to the heart of the inflammatory response. Based on these results, we think it will be a valuable tool for tackling severe COVID-19 illness.”
Patients treated with dornase alfa were also more likely to need less oxygen and be discharged sooner compared to patients who received BAC. These additional benefits could help to free up beds and resources in the UK’s busy hospitals.
The next step will be to conduct larger clinical trials to ensure dornase alfa is safe and effective for treating severe COVID pneumonia. There is also potential for the drug to be trialled for other respiratory infections and conditions, such as acute exacerbations of pulmonary fibrosis, where inflammation of already scarred lung tissue affects how well oxygen can be absorbed.
Most tuberculosis (TB) tests still require a trip to the clinic. Now, new technology has made it possible to test people at home. This could be a big deal for South Africa, where much TB goes undiagnosed. We unpack the findings and implications of a recent study into such TB home testing.
One of the biggest challenges in combatting TB in South Africa is that many people who fall ill with the disease are diagnosed late, or not diagnosed at all.
The World Health Organization (WHO) estimates that 280 000 people fell ill with TB in the country in 2022. Of these, roughly 66 000 were not diagnosed, and accordingly also not treated. Apart from the damage to the health of the people who are not diagnosed and treated, this also has implications for the further spread of TB since untreated TB is often infectious TB – people become non-infectious within a few weeks of starting TB treatment.
Typically, people who fall ill with TB only get diagnosed once they turn up at clinics with TB symptoms – this is called passive case-finding. In recent years, there has been a growing recognition that passive case-finding alone is not good enough if we want to diagnose more people more quickly. As a result, many people in South Africa considered to be at high risk of TB are now offered TB tests whether or not they have symptoms – an approach called targeted universal testing. Screening for TB using new mobile X-ray technology has also been piloted in the country.
Now, in the latest such active case-finding innovation, researchers have been offering people TB tests in the comfort of their own homes.
Dr Andrew Medina-Marino, a senior investigator at the Desmond Tutu Health Foundation (DTHF), tells Spotlight no one in the world was testing for TB at home until they recently started doing so at the DTHF’s new research site in the Eastern Cape.
The testing is done using a molecular testing device, roughly the size of a two litre Coke bottle, called the GeneXpert Edge. The GeneXpert Edge is a portable version of the GeneXpert machines that have been used in labs across the country to diagnose TB for over a decade.
The GeneXpert Edge is a standardised testing device that detects TB DNA in sputum. (Photo: Nasief Manie/Spotlight)
One challenge with the device was that it needed to be plugged into a power outlet in a wall and not all homes in the area have power. “So what we did is, we hooked up a car-like battery to the device and we were able to take it into people’s homes,” says Medina-Marino.
‘Acceptable and feasible’
A study lead by Medina-Marino, and recently published in Open Forum Infectious Diseases, set out to determine the acceptability and feasibility of in-home testing of household contacts of people with TB.
The study was conducted among 84 households in Duncan Village, a township in the Buffalo City Metropolitan Municipality in the Eastern Cape. The Metro had an estimated TB incidence of 876 cases per 100 000 population in 2019, according to the National Institute for Communicable Diseases. This number is much higher than the latest WHO estimate of 468 per 100 000 for South Africa as a whole.
From July 2018 to May 2019, people diagnosed with pulmonary TB were recruited from six government health clinics in the area. They were asked for permission to visit their homes to screen their household contacts for TB. Household contacts were verbally assessed for signs or symptoms of TB, including night sweats, weight loss, persistent cough and a fever.
Households where people had any signs or symptoms of TB were randomised to either be referred to a local clinic for TB testing or tested immediately in their home. Of the eighty-four randomised households, 51 household contacts were offered in-home testing. Everyone accepted the offer for in-home testing.
For the test with the GeneXpert Edge, Medina-Marino says household contacts had to produce a sputum sample. About 47% (24/51) were able to produce sputum. This was then mixed with a reagent containing the required components for a polymerase chain reaction test. This solution was then loaded into a disposable cartridge/test module and inserted into the Edge device. Results were available in about 90 minutes. Anyone who received a positive test result in their home were immediately referred to a clinic for TB treatment.
Regarding the 47 household contacts referred for testing at the clinic, only 15% (7 people) presented for clinic-based TB evaluation, 6 were tested, and 4 out of 6 returned for their results.
Ultimately, the study found that in-home testing of household contacts for TB was acceptable and feasible.
“It’s feasible. If you compare the rate of uptake of treatment versus the rate of uptake for testing, it looks like it’s performing much better when you do home based testing versus referral for testing at the clinic,” says Medina-Marino.
Risk of stigma?
Similar to when HIV home-based testing studies were carried out, Medina-Marino says prior to their study, community members expressed concerns about stigmatising houses that were visited. “[A] lot of people were saying: ‘If you go to people’s houses, you’re going to stigmatise the household.’”
But what they actually found was that people didn’t feel stigmatised. Household contacts of people with TB felt that coming to the house to test people brought a sense of security in the home. He adds that it was easy for people to believe the results because everything was done in front of them.
In instances where people didn’t have TB, Medina-Marino says household contacts were comforted that they didn’t have to be scared of the person tested. In instances where people did have TB, he says the attitude of household contacts was supportive to start treatment.
How the test compares to other tests
Apart from testing for TB, the GeneXpert Edge can also detect whether someone’s TB is resistant to rifampicin. This is one of the medicines in the standard four-drug combination used to treat TB.
Unlike the latest lab-base GeneXpert tests, the GeneXpert Edge does not detect resistance to any TB medicines other than rifampacin. “It is hard to fit the probes needed to detect other forms of resistance into the cartridge,” says study co-author Professor Grant Theron, head of the Clinical Mycobacteriology and Epidemiology Research group at Stellenbosch University’s Molecular Biology and Human Genetics Unit.
Theron notes that the sensitivity and specificity of GeneXpert Edge is similar to that of lab-based GeneXpert machines if the tests are done on specimens from the same type of patient and the same test cartridge. (High sensitivity means the likelihood of false negatives is low wile high specificity means the likelihood of false positives is low.)
Performance may however differ because of differences between people who test at home and people who test at the clinic. Theron explains that in their study they tested people who did not yet feel sick enough to go to get tested at the clinic. People who are sicker, and who are accordingly more likely to go to the clinic, are likely to have more pathogen in their sputum samples and be easier to diagnose.
‘A breakthrough for TB’
Home-based tests is a significant breakthrough in TB because of its crucial role in detecting cases early and enabling timely tracing and testing of household contacts, says Dr Ntokozo Mzimela, a lecturer in integrated pathology in the Faculty of Health Sciences at Nelson Mandela University.
She tells Spotlight it also offers several advantages over clinic-based tests. “They are highly accessible, facilitate mass testing, reduce the risk of disease transmission, and address patient reluctance by allowing testing in the comfort and privacy of one’s home.”
Mzimela adds the GeneXpert Edge and portable X-ray screening serve complementary roles in TB diagnosis. “While the X-ray reveals lung abnormalities, the Edge confirms the presence of TB bacteria. Both tools are essential and should be used in conjunction to provide comprehensive diagnostic insights and ensure accurate and timely treatment for patients,” she says.
Professor Keertan Dheda agrees that home-based testing could link up neatly with portable X-ray, but adds it is still too early to determine where home-based TB testing will fit into the country’s TB testing programme. Dheda heads up the Division of Pulmonology at Groote Schuur Hospital and the University of Cape Town.
“We don’t yet know whether testing everyone is the right approach or whether reflex testing based on chest x-ray abnormalities is the right approach,” Dheda says. “Now that feasibility has been established, it means that more studies can be undertaken, and operational research can be commenced.”
Further studies are already underway, Medina-Marino tells Spotlight.
He says the study in Duncan Village found that about 60% of household contacts who had TB symptoms could not cough up a sputum sample. His team therefore decided to combine in-home testing with an oral swab.
“So in the study that we’re doing now in households, we found an additional 12 people who cannot produce sputum but on their swab test, they showed a positive swab result. Tongue swabs increase yield of case finding among those unable to produce sputum,” he says.
Scanning electron microscope image of bacteria responsible for Haemophilus influenzae type B infections. Photographer Alain Grillet. Copyright Sanofi Pasteur
Researchers from The University of Queensland have identified how a common bacterium is able to manipulate the human immune system during respiratory infections and cause persistent illness.
“These bacteria are especially damaging to vulnerable groups, such as those with cystic fibrosis, asthma, the elderly, and Indigenous communities,” Professor Kappler said.
“In some conditions, such as asthma and chronic obstructive pulmonary disease, they can drastically worsen symptoms.
“Our research shows the bacterium persists by essentially turning off the body’s immune responses, inducing a state of tolerance in human respiratory tissues.”
Professor Kappler said the bacterium had a unique ability to ‘talk’ to and deactivate the immune system, convincing it there was no threat.
The researchers prepared human nasal tissue in the lab, growing it to resemble the surfaces of the human respiratory tract, then monitored gene expression changes over a 14-day ‘infection’.
They found limited production of inflammation molecules over time, which normally would be produced within hours of bacteria infecting human cells.
“We then applied both live and dead Haemophilus influenzae, showing the dead bacteria caused a fast production of the inflammation makers, while live bacteria prevented this,” Professor Kappler said.
“This proved that the bacteria can actively reduce the human immune response.”
Co-author and paediatric respiratory physician Emeritus Professor Peter Sly from UQ’s Faculty of Medicine, said the results show how Haemophilus influenzae can cause chronic infections, essentially living in the cells that form the surface of the respiratory tract.
“This is a rare behaviour that many other bacteria don’t possess,” Emeritus Professor Sly said.
“If local immunity drops, for example during a viral infection, the bacteria may be able to ‘take over’ and cause a more severe infection.”
The findings will lead to future work towards new treatments to prevent these infections by helping the immune system to recognise and kill these bacteria.
“We’ll look at ways of developing treatments that enhance the immune system’s ability to detect and eliminate the pathogen before it can cause further damage,” Professor Kappler said.
Besides preventing illness and death, tuberculosis prevention therapy is estimated to be highly cost effective. Yet, uptake of the medication is not what it could be in South Africa. Tiyese Jeranji asks how much has changed since the Department of Health last year decided to make TB prevention therapy much more widely available.
Many people who have the TB bug in their lungs are not ill with TB disease. Having the bug in your body, does mean however that you are at risk of falling ill, should the TB bacteria get the overhand in its battle with your immune system.
Fortunately, we have medications that can kill TB bacteria before one falls ill. A recent World Health Organization (WHO) investment case, suggests such TB prevention therapy, commonly called TPT, reduces the risk of falling ill with TB in those exposed to the bug by 60% to 90% compared to people who do not get the treatment.
In South Africa, TPT has been available in the public sector for years, but until the publication of new government guidelines last year, only kids aged five or younger and people living with HIV could get the medication. Under the new guidelines, everyone who has had close contact with someone with TB should be offered a TB test and if they test negative be offered TPT – if they test positive they should be offered TB treatment. These changes dramatically expanded the number of people in South Africa who are eligible for TPT.
The antibiotics used for TPT has also changed in recent years. For many years, the only option was a medication called isoniazid taken for six or more months. We now also have two three-month options – isoniazid and rifapentine given once weekly and rifampicin and isoniazid given daily. These shorter duration treatment courses should help more people complete the treatment.
Down and up?
Dr Norbert Ndjeka, Chief Director of TB Control and Management at the National Department of Health, tells Spotlight that in recent years, South Africa has seen a steady decline in the number of people initiated on TPT.
The decline has been substantial. In people living with HIV, initiation on TPT dropped from 454 000 in 2018 to around 241 000 in 2023. In children aged five and younger who have had contact with someone with TB, it fell from 25 357 in 2018 to 15 775 in 2023.
TPT enrolments per province for 2023
Province
People living with HIV
Contacts < 5 Years
Contacts > 5 Years
Eastern Cape
34 623
2 551
4 771
Free State
14 535
562
1 027
Gauteng
67 333
1 368
4 241
KwaZulu-Natal
62 362
3 168
8 519
Limpopo
15 871
391
452
Mpumalanga
25 618
669
2 006
Northern Cape
3 178
855
1 595
North West
9 433
596
1 425
Western Cape
8 532
5 615
1 278
South Africa
241 485
15 775
25 314
*Typically, provinces with higher numbers of people diagnosed with TB or those with high numbers of people living with HIV will report higher TPT initiations.
There are two significant reasons for this decline, according to Ndjeka. Firstly, declining TB incidence, and secondly, declining HIV incidence.
“With fewer people diagnosed with TB disease, fewer contacts will need TPT, and with fewer people being diagnosed with HIV, fewer people will initiate TPT regardless of TB exposure,” he says.
WHO figures have shown a significant downward trend in the estimated TB cases per year in South Africa and according to Thembisa, the leading mathematical model of HIV in South Africa, the number of people newly starting HIV treatment has dropped from a peak of over 700 000 in 2011, to well under 300 000 in 2023.
But the recent downward trend in people taking TPT may be coming to an end. “We believe that the implementation of the new guidelines within the current strategic framework will lead to increases in TPT enrolment,” says Ndjeka.
In line with the new guidelines, there are also changes to what TPT data is being collected. “For example, we never used to report on TPT provision to contacts 5 years and older, but now we do and in 2023 at least 25 314 TB contacts 5 years and older were initiated on TPT,” he says.
20% increase expected in 2024
Based on the data reported for January and February of this year, Ndjeka expects that overall TPT initiations will increase by at least 20% in 2024 compared to 2023. Moreover, as documented in the National Strategic Plan for HIV, TB and STIs 2023-2028, there is a plan to have a steady annual increase in TPT enrolments leading up to 2028.
Ndjeka says based on the NSP TPT targets, South Africa is exceeding TPT targets for people living with HIV, but reaching less than 25% of targets for TB contacts. He points out that performance varies by province, but that all provinces have a long way to go in terms of reaching TB contacts.
‘Cost saving over time’
“The aim of offering TPT is to reduce the TB incidence,” Ndjeka says. “So, if everyone eligible is offered TPT there will obviously be increased costs initially but cost saving over time. This looks at cost of treating people with TB, lives saved/ deaths prevented as well as costs to patients.”
For South Africa, he says, it is estimated that we can reduce the number of people with TB by 138 000 by 2050 at an estimated cost of R23 226.90 per TB episode prevented.
Ndjeka says it costs the health department an estimated at R1 498.51 to treat one person with drug-susceptible TB for 6 months and R16 612.82 to treat one person with the standard drug-resistant TB treatment for 6 months. “These costs are for medications alone, which can also go beyond R70 000 depending on the patient and the type of resistant TB. Moreover, when factoring in clinical consultations, hospitalisations, and costs to patients the costs go up considerably,” he says.
The cost of providing TPT also depends on the regimen. One person on TPT can cost as little as R608.77 for a course of three months of isoniazid and rifapentine given once weekly, and up to R1 358.02 for 12 months of isoniazid. “TPT also has much lower associated costs for example there is no hospitalisation, fewer clinic visits and consultations,” Ndjeka says.
“By preventing TB, the cost of TB treatment is avoided along with the costs of treating some of the acute and chronic conditions that someone with TB may experience even after being cured of TB. These include chronic obstructive pulmonary disease, bronchiectasis and pneumonia,” says Alison Best, communication manager at Cape Town-based NGO TB HIV Care.
“For children under five in particular, who are at increased risk of disseminated TB like TB meningitis, the cost of not preventing TB could be death or severe lifelong disability,” she says, adding that preventing TB in a single individual also prevents the costs associated with any onwards transmission of TB from that individual to others.
Questions over implementation
Expanded TPT eligibility has been widely welcomed, but questions have been raised over how well the new guidelines are being implemented.
Best says government austerity measures have made implementing new initiatives in the healthcare setting challenging.
“There is not much political will to implement the guidelines (to expand eligibility for TPT) at provincial and district levels and this has translated into the slow release of circulars, delays in training health workers, poor knowledge of the policy and its low prioritisation,” she says.
Ingrid Schoeman, Director of Advocacy and Strategy at TB Proof (a local advocacy group), says often when a national policy is released, there are delays at provincial-level in releasing circulars to enable health worker training.
“This results in these services not being available at district-level. In the Western Cape, civil society organisations, the [provincial] Department of Health, City of Cape Town and implementing partners are now all working together to support health worker training, and implementing community-led awareness campaigns so that all close TB contacts know they are eligible for TPT,” she says.
Best adds that tracking the data to show how many people are starting and completing TPT tends to be difficult. She notes there are many gaps in capturing the information. This includes, at times, the limited recording of information in patient folders by clinicians and suboptimal inputting of data by data capturers.
Ndjeka says the national department of health has been conducting training on the new guidelines with provincial and district TB and HIV programme managers, district support partners and other trainers.
“They are then responsible for training health care workers. The antiretroviral therapy guideline training also includes TPT. Webinars on the knowledge hub (an online training platform) have also conducted,” he says.
However, Ndjeka conceded that there is a lack of awareness about the value of TPT. “Additionally,” he says, “there is reluctance from clinicians to provide TPT. This result in poor demand for TPT. Treatment adherence is another problem especially for people on the long regimen (12 months)”.
Plans to address these challenges, among other things, include marketing TPT as treatment for TB infection rather than prevention, targeted communication strategies, community mobilisation, and ongoing training and mentoring of healthcare workers, says Ndjeka.
For children seeking care at a California urban paediatric health centre, extreme heat events were associated with increased asthma hospital visits, according to research published at the ATS 2024 International Conference.
“We found that both daily high heat events and extreme temperatures that lasted several days increased the risk of asthma hospital visits,” said corresponding author Morgan Ye, MPH, research data analyst, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco School of Medicine. “Understanding the impacts of climate-sensitive events such as extreme heat on a vulnerable population is the key to reducing the burden of disease due to climate change.”
Ms Ye and colleagues looked at 2017-2020 electronic health records from the UCSF Benioff Children’s Hospital Oakland, which included data on asthma hospital visits by patients of the hospital, some of whom are from Benioff Oakland’s Federally Qualified Health Center, and demographics including patients’ zip codes. They used data from the PRISM Climate Group of Oregon State University to determine the timing of daily maximum (daytime heat waves) and minimum (nighttime heat waves) for each zip code. The researchers restricted their analyses to the region’s warm season (June to September). To evaluate the potential range of effects of different heat wave measurements, they used 18 different heat wave definitions, including the 99th, 97.5th and 95th percentile of the total distribution of the study period for one, two or three days.
They designed the study in a way that allowed them to determine the association between each heat wave definition and a hospital visit. They repeated the analysis for Bay Area and Central California zip codes.
The team discovered that daytime heat waves were significantly associated with 19% higher odds of children’s asthma hospital visits, and longer duration of heat waves doubled the odds of hospital visits. They did not observe any associations for night-time heat waves.
According to Ye, “We continue to see global temperatures rise due to human-generated climate change, and we can expect a rise in health-related issues as we observe longer, more frequent and severe heat waves. Our research suggests that higher temperatures and increased duration of these high heat days are associated with increased risk of hospital visits due to asthma. Children and families with lower adaptation capacity will experience most of the burden. Therefore, it is important to obtain a better understanding of these heat-associated health risks and susceptible populations for future surveillance and targeted interventions.”
The authors note that past research has suggested positive associations between extreme heat and asthma, but findings regarding hospitalisations and emergency room visits have been conflicting. Additionally, many other studies have focused on respiratory hospitalizations and not hospitalizations for asthma, specifically, and have not included or had a focus on children. This study is also unique because it investigated the effect of daily high temperatures but also the effects of persistent extreme temperatures.
The San Francisco Bay Area and California overall are unique areas of interest because the state is considered a coastal region with less prevalence of cooling units, such as air conditioners. While temperatures may not reach the extremes experienced in other parts of the country, this study demonstrates that even milder extreme heat temperatures may significantly impact health. These effects are more pronounced in climate-susceptible populations, including children and those who are medically vulnerable, such as those served by the urban paediatric health centre in this study. The authors hope these study results will lead to more equitable health outcomes and reduce racial/ethnic disparities observed in climate-sensitive events.
“These results can be used to inform targeted actions and resources for vulnerable children and alleviate health-related stress during heat waves,” they conclude.