Category: Paediatrics

Maternal Antibodies in Infants Interfere with Malaria Vaccine Responses

Photo by Mufid Majnun on Unsplash

Maternal antibodies passed across the placenta can interfere with the response to the malaria vaccine, which would explain its lower efficacy in infants under five months of age, according to research led by the Barcelona Institute for Global Health (ISGlobal), in collaboration with seven African centers (CISM-Mozambique, IHI-Tanzania, CRUN-Burkina Faso, KHRC-Ghana, NNIMR-Ghana, CERMEL-Gabon, KEMRI-Kenya).

The findings, published in Lancet Infectious Diseases, suggest that children younger than currently recommended by the WHO may benefit from the RTS,S and R21 malaria vaccines if they live in areas with low malaria transmission, where mothers have less antibodies to the parasite.

The world has reached an incredible milestone: the deployment of the first two malaria vaccines –RTS,S/AS01E and the more recent R21/Matrix-M– to protect African children against malaria caused by Plasmodium falciparum. Both vaccines target a portion of the parasite protein called circumsporozoite (CSP) and are recommended for children aged 5 months or more at the moment of the first dose.

“We know that the RTS,S/AS01E malaria vaccine is less effective in infants under five months of age, but the reason for this difference is still debated,” says Carlota Dobaño, who leads the Malaria Immunology group at ISGlobal, a centre supported by “la Caixa” Foundation. 

To investigate this, Dobaño and her team analysed blood samples from more than 600 children (age 5-17 months) and infants (age 6-12 weeks) who participated in the phase 3 clinical trial of RTS,S/AS01E. Using protein microarrays, they measured antibodies against 1000 P. falciparum antigens before vaccination to determine if and how malaria exposure and age affected IgG antibody responses to the malaria vaccine.

“This microarray approach allowed us to accurately measure malaria exposure at the individual level, including maternal exposure for infants and past infections for older children,” says Didac Maciá, ISGlobal researcher and first author of the study. 

The role of maternal antibodies

The analysis of antibodies to P. falciparum in children who had received a control vaccine instead of RTS,S/AS01E revealed a typical “exposure” signature, with high levels in the first three months of life due to the passive transfer of maternal antibodies through the placenta, a decline during the first year of life, and then a gradual increase as a result of naturally acquired infections.

In children vaccinated with RTS,S/AS01E, antibodies induced by natural infections did not affect the vaccine response. However, in infants, high levels of antibodies to P. falciparum, presumably passed from their mothers during pregnancy, correlated with reduced vaccine responses. This effect was particularly strong for maternal anti-CSP antibodies targeting the central region of the protein. Conversely, infants with very low or undetectable maternal anti-CSP IgGs exhibited similar vaccine responses as those observed in children.

The molecular mechanisms underlying this interference by maternal antibodies are not fully understood, but the same phenomenon has been observed with other vaccines such as measles. 

Overall, these findings confirm something that was already suspected but not clearly demonstrated: despite their protective function, maternal anti-CSP antibodies, which decline within the first three to six months of life, may interfere with vaccine effectiveness. The higher the level of malaria transmission, the more maternal antibodies are transmitted to the baby, resulting in lower vaccine effectiveness. These findings further suggest that infants below five months of age may benefit from RTS,S or R21 vaccination in low malaria transmission settings, during outbreaks in malaria-free regions, or in populations migrating from low to high transmission settings.

“Our study highlights the need to consider timing and maternal malaria antibody levels to improve vaccine efficacy for the youngest and most vulnerable infants,” says Gemma Moncunill, ISGlobal researcher and co-senior author of the study, together with Dobaño.

Source: Barcelona Institute for Global Health (ISGlobal)

Outdoor Play Helps Protect Toddlers against Later Childhood Obesity

New research published in Acta Paediatrica suggests that children who engage in outdoor play during their preschool years have a lower risk of developing obesity later in childhood.

The study included children born in Japan during two weeks in January and July 2001. Of 53 575 children born, 42 812 had data on outdoor play habits at age 2.5 years. In a survey, parents were asked, “Where do your children usually play (excluding home residences and daycare centres attended)?” Available options for answers included “in my garden or on the grounds of my apartment complex,” “in parks,” “in natural areas such as fields, forests, and beaches,” “on the street,” “in shrines and temples,” “in playgrounds in department stores and supermarkets,” “other,” and “don’t play anywhere but inside my home.” If one or more of the first five items were chosen, a child was considered to have exposure to outdoor play—this was the case for 91% of the children.

In follow-up surveys when the children were seven years old, 31 743 of 42 812 (74%) children had height and weight data, with 10% classified as overweight or obese.

Compared with children without exposure to outdoor play, children with outdoor play habits had 15% lower odds of being overweight or obese, after adjusting for other influencing factors.

“We suggest that parents and caregivers encourage outdoor play habits in their children at an early age, as this may help prevent obesity later in life,” said corresponding author Takahiro Tsuge, MPH, of Kurashiki Medical Center.

Source: Wiley

Raising Happy Eaters: Unlocking the Secrets of Childhood Appetite

Photo by Vanessa Loring on Pexels

The foundation for healthy eating behaviour starts in infancy. Young children learn to regulate their appetite through a combination of biological, psychological, and sociological factors. In a new paper published in Social Science & Medicine, researchers at the University of Illinois Urbana-Champaign propose a model that explores these factors and their interactions, providing guidelines for better understanding childhood appetite self-regulation.

“When we talk about obesity, the common advice is often to just eat less and exercise more. That’s a simplistic recommendation, which almost makes it seem like an individual’s willpower solely determines their approach to food,” said lead author Sehyun Ju, a doctoral student in the Department of Human Development and Family Studies, part of the College of Agricultural, Consumer and Environmental Sciences at Illinois. 

Appetite self-regulation is related to general self-regulation, but it specifically concerns an individual’s ability to regulate food intake, which affects healthy development and obesity risk. Children are born with a capacity to regulate appetite based on hunger and satiety signals, but with increased exposure to environmental factors, their eating is increasingly guided by psychological reasoning and motivations. Therefore, it is important to take a developmental perspective to trace changes in eating behaviours over time, Ju stated.

Ju and her colleagues provide a comprehensive framework based on the biopsychosocial pathways model, which outlines three interacting categories: Biological factors, including sensory experience, physiological hunger and satiety signals, brain-gut interaction, and the influence of the gut microbiome; psychological factors, including emotional self-regulation, cognitive control, stress regulation, and reward processing; and social factors, such as parental behaviour and feeding practices, culture, geographic location, and food insecurity.

The researchers combine this framework with temperamental theory to explore how the pathways are modified by individual temperament.

Children react differently to stimuli based on their psychological and emotional make up, Ju explained. For example, openness to novelty and positive anticipation can affect whether a child is willing to try new foods. If a parent pressures their child to eat, it could be counter-productive for a child with heightened sensitivity to negative affect, causing the child to consume less.

The model also takes children’s developmental stages into account. Infants have basic appetite regulation based on physiological cues. They gradually become more susceptible to external influences and by age 3-5, children begin to exhibit greater self-control and emotional regulation.

“By analysing the pathways outlined in our model, we can better understand the combined influences of multiple factors on children’s appetite self-regulation and their motivations to approach food,” Ju said. “For example, the presence of palatable food may not generate similar responses in everyone. Children could approach food as a reward, for pleasure-seeking, or to regulate emotions. The underlying motivations can be diverse, and they are influenced by external factors as well as temperamental characteristics.”

Socio-environmental influences include parent-child interactions around food, as well as non-food-related caregiver practices that can impact the child’s emotional regulation. The household food environment, cultural value of food intake, and food availability are also important factors, the researchers stated.

“If we understand the differential susceptibility to various factors, we can identify and modify the environmental influences that are particularly obesogenic based on children’s temperamental characteristics. Then we will be able to provide more refined approaches to support children’s healthy eating behaviour,” Ju explained.

Source: University of Illinois College of Agricultural, Consumer and Environmental Sciences

Elevated NK Cells Found in Children with Severe RSV

Photo by Andrea Piacquadio on Unsplash

Respiratory syncytial virus (RSV) is the leading cause of hospitalisation in young children due to respiratory complications such as bronchiolitis and pneumonia. Yet little is understood about why some children develop only mild symptoms while others develop severe disease.

To better understand what happens in these cases, clinician-scientists from Brigham and Women’s Hospital, and Boston Children’s Hospital analysed samples from patients’ airways and blood, finding distinct changes in children with severe cases of RSV, including an increase in the number of natural killer (NK) cells in their airways.

The descriptive study, which focuses on understanding the underpinnings of severe disease, may help to lay groundwork for identifying new targets for future treatments. Results are published in Science Translational Medicine.

“As a physician, I help to care for children who have the most severe symptoms, and as a researcher, I’m driven to understand why they become so sick,” said corresponding author Melody G. Duvall, MD, PhD, of the Division of Pulmonary and Critical Care Medicine at Brigham and Women’s Hospital (BWH) and the Division of Critical Care Medicine at Boston Children’s Hospital. “NK cells are important first responders during viral infection – but they can also contribute to lung inflammation. Interestingly, our findings fit with data from some studies in COVID-19, which reported that patients with the most severe symptoms also had increased NK cells in their airways. Together with previous studies, our data link NK cells with serious viral illness, suggesting that these cellular pathways merit additional investigation.”

Duvall and colleagues, including lead author Roisin B. Reilly of the Division of Pulmonary and Critical Care Medicine at BWH, looked at samples from 47 children critically ill with RSV, analysing immune cells found in their airways and peripheral blood. Compared to uninfected children, those with severe illness had elevated levels of NK cells in their airways and decreased NK cells in their blood. In addition, they found that the cells themselves were altered, both in appearance and in their ability to perform their immunological function of killing diseased cells.

Duvall and co-authors have previously described a post-pandemic surge in paediatric RSV infections. While clinicians can only provide supportive care to the most severely sick children, vaccines to prevent RSV are now available for children 19 months and younger, adults 60 years and over, and people who are pregnant.

Source: Brigham and Women’s Hospital

Younger Children at Greater Risk for a Postoperative Knee Surgery Complication

Discoid lateral meniscus and osteochondritis dissecans in adolescent patients. The black arrow represents DLM and the white arrow represents osteochondritis dissecans. Credit: Osaka Metropolitan University

New research published in Knee Surgery, Sports Traumatology, Arthroscopy has shown that younger age is associated with increased risk of osteochondritis dissecans, a serious complication arising from surgery to correct misshapen knee cartilage.

Growing pains are common in maturing children, but sometimes this growth can be irregular and cause injury. Discoid lateral meniscus (DLM), a misshapen knee cartilage, is one such occurrence that can degenerate into osteochondritis dissecans, a joint disorder where the bone and joint begin to separate from the rest of the bones. It has been reported that osteochondritis dissecans of the femoral condyle occurs in approximately 14.5% of cases of DLM, but there has been little analysis of its treatment to date.

Dr Ken Iida and Specially Appointed Professor Yusuke Hashimoto’s team at Osaka Metropolitan University’s Graduate School of Medicine analysed the incidence of post-surgery osteochondritis dissecans. This analysis consisted of two groups, a pre-osteochondritis group with DLM and osteochondritis dissecans of the outer femoral epicondyle, and a non-osteochondritis dissecans DLM group. They studied 95 cases of DLM patients under the age of 15 who underwent surgery between 2003 and 2017 and had five years of post-surgery records. There were 15 cases in the pre-osteochondritis dissecans group and 80 non-osteochondritis dissecans cases.

Their analysis found that the surgical results for osteochondritis dissecans were good in pre-osteochondritis cases, but 28.5% had a recurrence of the joint disorder. In the non-osteochondritis dissecans group, 8.8% were diagnosed with the disorder after surgery. Additionally, age was found to be a risk factor for relapse or post-surgical osteochondritis dissecans, and surgery on patients ages 9 and under was also involved in the occurrence of osteochondritis dissecans.

“Patients with DLM accompanied by osteochondritis dissecans of the femoral condyle often have difficulty in deciding on a treatment method,” Dr Iida explained. “Based on the results of this study, we believe for patients ages 9 years or younger, it is necessary to consider conservative treatment methods rather than immediate surgery.”

Source: Osaka Metropolitan University

Antibodies in Breastmilk Protect Infants Against Rotavirus

Photo by Wendy Wei: https://www.pexels.com/photo/mother-breastfeeding-her-child-3074935/

A study led by researchers at the found that breast milk provides protection against rotavirus, a common gastrointestinal disease in infants. Babies whose mothers had high levels of specific antibodies in their breast milk were able to fend off the infection for a longer period than infants whose mothers had lower levels. The researchers also uncovered an unexpected relationship between BMI and antibody levels.

Published in the Journal of Clinical Investigation, the University of Rochester Medical Center-led study also found significant differences in antibody profiles in breast milk between mothers in high-income countries (HICs) and low- and middle-income countries (LMICs). Researchers analysed human milk samples from 695 women in Finland, the US, Pakistan, Peru, and Bangladesh, and measured specific IgA and IgG antibodies, which are common antibodies produced in breast milk, against 1607 proteins from 30 pathogens.

The research, led by Dr Kirsi Jarvinen-Seppo, MD, PhD, professor at UR Medicine Golisano Children’s Hospital (GCH), tracked antibody levels and kinetics over time to analyse antibody responses to a wide range of respiratory, diarrhoeal and sepsis pathogens in human milk. The primary aim of the study, funded by the Bill and Melinda Gates Foundation, was to understand the protective properties of these antibodies and how they vary across different geographic and economic regions.

“We would expect to find differences in antibody levels in different countries, due to different diseases circulating among areas of the world, but this is one of the first times that there’s been a head-to-head comparison for dozens of pathogens across several continents,” said Jarvinen-Seppo. “It was encouraging to see such a clear link between higher antibody levels and a delay to rotavirus infection, and this was consistently observed among an independent validation cohort.”  

Other notable findings from the study:

  • Milk from women in LMICs had higher levels of IgA and IgG antibodies against various intestinal and respiratory pathogens compared to milk from HICs. This difference was particularly notable for pathogens such as Shigella and pneumococcus, which are major contributors to morbidity and mortality in young children.
  • Higher body mass index (BMI) was associated with lower antibody levels, which went against expectations.

“The variation in antibody profiles between regions highlights the impact of economic and environmental factors on maternal immunity,” said Jarvinen-Seppo.

In addition to Rotavirus findings, the discovery that a higher BMI was associated with lower antibody counts in breast milk was also unexpected.

“We had anticipated that underweight mothers might have lower antibody levels due to poorer nutritional status,” said Jarvinen-Seppo. “Due to rising obesity rates worldwide, this could be a significant finding, but this is preliminary and additional research is needed since this is the first time this has been measured.”

“While the data on rotavirus protection is compelling, the geographical and BMI-related variations highlight areas where further research is essential. The study sets the stage for additional investigations that could lead to better understanding and interventions for improving infant health globally,” said Jarvinen-Seppo.

Source: University of Rochester Medical Center

When a Child Hurts, Validating their Pain may be the Best First Aid

Photo by cottonbro studio

Whether it’s a sore arm or a fear of injections, how a child is treated when they present with pain could significantly affect how they respond to and manage pain later in life.

In a new study published in the journal Pain, researchers say that parents and doctors should be mindful of how they talk to and treat children experiencing pain – no matter how big or small the injury – knowing that these foundational experiences can be carried forward into adulthood.

Drawing from diverse research across developmental psychology, child mental health, and pain sciences, the University of South Australia researchers say that it may be important to validate children’s pain by demonstrating that their pain-related experiences, emotions, or behaviours are acceptable, understood, and legitimate.

By validating a child’s pain, the child feels heard and believed, which reinforces their trust and connection with their parent, or with a treating doctor.

UniSA researcher Dr Sarah Wallwork says social relationships play a critical role in shaping how health is experienced throughout the lifespan.

“When a parent or doctor validates a child’s experiences in a way that matches their expressed vulnerability, it helps the child to feel accepted, builds connection and trust, and may help the child to develop critical skills in regulating their emotions,” Dr Wallwork says.

“For example, when a doctor is attentive, and responds to a child’s emotional and behavioural cues, particularly about seeking help, the clinician is telling the child their pain is real and concurrently reinforcing helpful pain management behaviours, such as attending the clinic.

“However, if these cues are missed, or the doctor questions the validity of their pain, this can have negative consequences for the child. Not only can it affect the clinician-patient relationship and trust but it can also impact future attendance at appointments and adherence to a pain management plan.

“Pain and emotion are inextricably linked, with emotion dysregulation commonly co-occurring with chronic pain.

“By validating children’s experiences of pain, they are likely to hold fewer negatively biased memories of pain and be in better position to seek help in the future, when then need it.”

In Australia, as many as one in four children experience chronic pain.

Dr Wallwork says that setting children up for success should cover all aspects of life, including pain management.

“Our research highlights an underemphasised element of child and youth pain treatment, especially for children in minoritised groups, who are systematically undertreated for pain,” Dr Wallwork says.

“People with chronic pain often report that their pain-related experiences are met with disbelief or dismissal. This can have significant consequences, including poor mental health and reduced quality of life.

“Given the significant burden of chronic pain, and the clear intersection with the rising child mental health crisis, it’s important that we better manage pain earlier on, rather than waiting until it is too late.”

Dr Wallwork says this review provides a building block for future empirical research.

Source: University of South Australia

Signs of Developing Asthma are Evident in the First Year of Life

Respiratory tract. Credit: Scientific Animations CC4.0

What factors lead to chronic respiratory disease? Researchers investigated this question using health data from about 780 infants. Their analysis, published in The Lancet Digital Health, shows that children’s risk of developing asthma later in life can be more reliably predicted by observing the dynamic development of symptoms during the first year of life.

Genetic predisposition, passive smoking, high levels of air pollution and infections are only a few of the risk factors for asthma. Each factor has only a small influence on its own. It is their interplay that makes asthma more likely, according to the hypothesis of an international research committee, of which Professor Urs Frey of the University of Basel and the University Children’s Hospital Basel is a member.

Together with Dr Uri Nahum from his team and international colleagues, Frey investigated how the interaction of these factors during the course of the first year of life affected children’s developing respiratory systems. The analysis was based on health data from two cohorts, amounting to around 780 healthy infants born in various European countries.

A new way of looking at chronic illness

For both cohorts the researchers calculated the network of interactions between a range of known risk factors for every week of each child’s life, and then compared these with the appearance of symptoms such as coughing or wheezing. “Observing this interaction of risk factors in the context of dynamic development over time is a new way of looking at chronic illnesses,” underlines Frey. It is a case of watching the developing lungs adapting to their environment.

And it was exactly this, the adaptation of the lungs, that differentiated the group of children who developed asthma at between two and six years of age from those who had not developed it by the time they started school (generally at six years old in Switzerland). “It’s a nice, practical example of the value of digital health data, which were first quantified mathematically using these kinds of dynamic network analyses,” says Frey.

The findings cannot yet be used for early diagnosis in individual children. However, according to Frey: “With greater amounts of data and machine learning, it would certainly be conceivable to calculate a risk profile for individual children in the future.” Nowadays, digital health data is relatively easy to collect with the help of smartphone apps.

Source: University of Basel

Do Videogames Made to Improve Children’s Mental Health Work?

Photo by Igor Karimov on Unsplash

In a review of 27 different studies, a Johns Hopkins Children’s Center team concludes that some video games created as mental health interventions can be helpful – if modest – tools in improving the mental well-being of children and teens with depression and attention-deficit/hyperactivity disorder (ADHD). They did not significantly help with anxiety, however.

A report on the review of studies from peer-reviewed journals between 2011 and March 20, 2024, was published in JAMA Pediatrics.

An estimated 20% of children and teenagers ages three to 17 in the US have a mental, emotional, developmental or behavioural disorder.

“We found literature that suggests that even doubling the number of paediatric mental health providers still wouldn’t meet the need,” says Barry Bryant, MD, a resident in the Department of Psychiatry and Behavioral Sciences in the Johns Hopkins University School of Medicine and first author of the new study.

In a bid to determine if so-called “gamified digital mental health interventions,” or video games designed to treat mental health conditions, benefited those with anxiety, depression and ADHD, the research team analysed their use in randomised clinical trials for children and adolescents.

Bryant and child and adolescent psychologist Joseph McGuire, PhD, identified 27 such trials from the US and around the world. The studies overall included 2911 participants with about half being boys and half being girls, ages six to 17 years old.

The digital mental health interventions varied in content, but were all created with the intent of treating ADHD, depression and anxiety. For example, for ADHD, some of the games involved racing or splitting attention, which required the user to pay attention to more than one activity to be successful in gameplay. For depression and anxiety, some of the interventions taught psychotherapy-oriented concepts in a game format. All games were conducted on technology platforms, such as computers, tablets, video game consoles and smartphones. The video games are available to users in a variety of ways. Some are available online, while others required access through specific research teams involved in the studies.

The research team’s analysis found that video games designed for patients with ADHD and depression provided a modest reduction (both with an effect size of .28) in symptoms related to ADHD and depression, such as improved ability to sustain attention and decreased sadness, based on participant and family feedback from the studies. (An effect size of .28 is consistent with a smaller effect size, where as in-person interventions often produce moderate [.50] to large [.80] effects.)  By contrast, video games designed for anxiety did not show meaningful benefits (effect size of .07) for reducing anxiety symptoms for participants, based on participant and family feedback.

Researchers also examined factors that led to improved benefit from digital mental health interventions. Specific factors related to video game delivery (i.e., interventions on computers and those with preset time limits) and participants (i.e., studies that involved more boys) were found to positively influence therapeutic effects. Researchers say these findings suggest potential ways to improve upon the current modest symptom benefit.

“While the benefits are still modest, our research shows that we have some novel tools to help improve children’s mental health – particularly for ADHD and depression – that can be relatively accessible to families,” says Joseph McGuire, Ph.D., an author of the study and an associate professor of psychiatry and behavioural sciences in the school of medicine. “So if you are a paediatrician and you’re having trouble getting your paediatric patient into individual mental health care, there could be some gamified mental health interventions that could be nice first steps for children while waiting to start individual therapy.”

The team cautioned that their review did not indicate why certain video game interventions performed better than others. They also note that some of the trials included in the study used reported outcome measures, and the studies did not uniformly examine the same factors which could have influenced the effects of the treatment. Some of the video games included in the studies are not easily accessible to play.

The researchers also noted that while video game addiction and the amount of screen time can be concerns, those children who played the games studied in a structured, time-limited format tended to do best.

Source: Johns Hopkins Medicine

Breastfeeding Shapes the Gut Microbiome and Protects against Asthma

Photo by Wendy Wei

Human breast milk regulates a baby’s mix of microbes, known as the microbiome, during the infant’s first year of life, in turn lowers the child’s risk of developing asthma, according to a new study published in Cell.

Led by researchers at NYU Langone Health and the University of Manitoba, the study results showed that breastfeeding beyond three months supports the gradual maturation of the microbiome in the infant’s digestive system and nasal cavity, the upper part of the respiratory tract. Conversely, stopping breastfeeding earlier than three months disrupts the paced development of the microbiome and was linked to a higher risk of preschool asthma.

Some components in breast milk, such as complex sugars called human milk oligosaccharides, can only be broken down with the help of certain microbes. This provides a competitive advantage to microbes capable of digesting these sugars. By contrast, infants who are weaned earlier than three months from breast milk and who then rely solely on formula feeding, become home to a different set of microbes –ones that will help the infant to digest the components in formula. While many of these microbes that thrive on formula do eventually end up in all babies, the researchers showed that their early arrival is linked to an increased risk of asthma.

“Just as a pacemaker regulates the rhythm of the heart, breastfeeding and human milk set the pace and sequence for microbial colonisation in the infant’s gut and nasal cavity, ensuring that this process occurs in an orderly and timely manner,” said study co-senior investigator and computational biologist Liat Shenhav, PhD. “Healthy microbiome development is not only about having the right microbes. They also need to arrive in the right order at the right time,” said Dr Shenhav, an assistant professor at NYU Grossman School of Medicine, its Institute for Systems Genetics, and the school’s Department of Microbiology.

For the study, Dr Shenhav, who is also an assistant professor at NYU’s Courant Institute of Mathematical Sciences, worked in collaboration with study co-senior investigator Meghan Azad, PhD, director of the Manitoba Interdisciplinary Lactation Center, and a professor of paediatrics and child health, at the University of Manitoba.

Another key study finding was that the bacterium Ruminococcus gnavus appeared much sooner in the guts of children who were weaned early from breast milk than in those of children who were exclusively breastfed. The bacterium is known to be involved in the production of molecules called short-chain fatty acids, and the formation and breakdown of the amino acid tryptophan. Both tryptophan and its metabolites have been linked to immune system regulation and disruption in previous research, including an increased risk of asthma. The study authors noted that beyond aiding in digestion, an infant’s microbiome plays a crucial role in the immune system’s development.

The study tracked the ebb and flow of microbes in the guts and noses of infants during the first year of life, as well as details on breastfeeding and the composition of their mothers’ milk. All the children and their mothers were participating in the CHILD Cohort Study, a long-term research project that has been studying the same 3500 Canadian children at different stages of life from the womb well into adolescence.

The data provided by the CHILD Cohort Study enabled researchers to detangle the impact of breastfeeding on an infant’s microbiome from a range of other environmental factors, including prenatal smoke exposure, antibiotics, and the mother’s asthma history.

Even when these factors were accounted for, they found that breastfeeding duration remained a powerful determinant for the child’s microbial makeup over time. They also used these microbial dynamics and data on milk components to train a machine learning model that accurately predicted asthma years in advance. Finally, they created a statistical model to learn causal relationships, which showed that the primary way breastfeeding reduces asthma risk is through shaping the infant’s microbiome.

“The algorithms we developed provide valuable insights into microbial dynamics during an infant’s first year of life and how these microbes interacted with the infant,” said Dr Shenhav. “These insights allowed us to move beyond identifying associations, enhancing our ability to make predictions and explore causal relationships.

“Our research highlights the profound impact of breastfeeding on the infant microbiome and breastfeeding’s essential role in supporting respiratory health. By uncovering the mechanisms behind the protective effects of breast milk, as demonstrated in this study, we aim to inform national guidelines on breastfeeding and weaning from breast milk in a data-driven manner.

“With further research, our findings could also contribute to developing strategies to prevent asthma in children who cannot be breastfed for at least three months,” she added.

Source: NYU Langone Health / NYU Grossman School of Medicine