Category: Neurodegenerative Diseases

Could Stimulating Gamma Brain Waves Help Treat Alzheimer’s?

Photo by JD Mason on Unsplash

A review in the Journal of Internal Medicine explores the potential of non-invasive interventions such as light, sound, and magnets to stimulate gamma brain waves for the treatment of Alzheimer’s disease. Such strategies may be beneficial because Alzheimer’s disease is characterised by reduced fast brain oscillations in the gamma range (30–100Hz).

The authors note that recent studies reveal that it is feasible and safe to induce 40Hz brain activity in patients with Alzheimer’s disease through a range of methods. Also, preliminary evidence suggests that such treatment can yield beneficial effects on brain function, disease pathology, and cognitive function in patients.

Various cells in the brain beyond neurons, including microglial cells, astrocytes and vascular cells, seem to be involved in mediating these effects.

“We found that increased gamma activity elicited by the non-invasive 40Hz sensory stimulation profoundly alters the cellular state of various glial cell types,” said corresponding author Li-Huei Tsai, PhD, of MIT. “We are actively investigating the mechanism by which the 40Hz brain activity recruits diverse cell types in the brain to provide neuroprotective effects.”

Source: Wiley

Explaining the Parallels between Vitamin B12 Deficiency and Multiple Sclerosis

This is a pseudo-colored image of high-resolution gradient-echo MRI scan of a fixed cerebral hemisphere from a person with multiple sclerosis. Credit: Govind Bhagavatheeshwaran, Daniel Reich, National Institute of Neurological Disorders and Stroke, National Institutes of Health

For decades, scientists have noted an intriguing similarity between a deficiency in vitamin B12 – an essential nutrient that supports healthy development and functioning of the central nervous system (CNS) – and multiple sclerosis (MS), a chronic disease in which the body’s immune system attacks the CNS and which can produce neurodegeneration.

Both vitamin B12 deficiency and MS produce similar neurological symptoms, including numbness or tingling in hands and feet, vision loss, difficulty walking or speaking normally and cognitive dysfunction, such as problems with memory.

In a new study, published in Cell Reports, researchers at Sanford Burnham Prebys, with collaborators elsewhere, describe a novel molecular link between vitamin B12 and MS that takes place in astrocytes – important non-neuronal glial cells in the brain.

The findings by senior study author Jerold Chun, MD, PhD, professor and senior vice president of neuroscience drug discovery, and Yasuyuki Kihara, PhD, research associate professor and co-corresponding author, and colleagues suggest new ways to improve the treatment of MS through CNS-B12 supplementation.

“The shared molecular binding of the brain’s vitamin B12 carrier protein, known as transcobalamin 2 or TCN2, with the FDA-approved MS drug fingolimod provides a mechanistic link between B12 signaling and MS, towards reducing neuroinflammation and possibly neurodegeneration,” said Chun.   

“Augmenting brain B12 with fingolimod or potentially related molecules could enhance both current and future MS therapies.”

In their paper, the team at Sanford Burnham Prebys, with collaborators at University of Southern California, Juntendo University in Japan, Tokyo University of Pharmacy and Life Sciences and State University of New York, focused on the molecular functioning of FTY720 or fingolimod (Gilenya®), a sphingosine 1-phosphate (S1P) receptor modulator that suppresses distribution of T and B immune cells errantly attacking the brains of MS patients.

Working with an animal model of MS as well as human post-mortem brains, the researchers found that fingolimod suppresses neuroinflammation by functionally and physically regulating B12 communication pathways, specifically elevating a B12 receptor called CD320 needed to take up and use needed B12 when it is bound to TCN2, which distributes B12 throughout the body, including the CNS.  This known process was newly identified for its interactions with fingolimod within astrocytes. Importantly, the relationship was also observed in human MS brains.

Of particular note, the researchers reported that lower levels of CD320 or dietary B12 restriction worsened the disease course in an animal model of MS and reduced the therapeutic efficacy of fingolimod, which occurred through a mechanism in which fingolimod hitchhikes by binding to the TCN2-B12 complex, allowing delivery of all to the astrocytes via interactions with CD320, with component losses disrupting the process and worsening disease.

These new findings further support to the use of B12 supplementation – especially in terms of delivering the vitamin to astrocytes within the brain – while revealing that fingolimod can correct the impaired astrocyte-B12 pathway in people with MS. 

The scientists said it is possible that other S1P receptor modulators on the market, such as Mayzent®, Zeposia® and Ponvory®, may access at least parts of this CNS mechanism.  The study supports B12 supplementation with S1P receptor modulators with the goal of improving drug efficacy for this class of medicines.

The study also opens new avenues on how the B12-TCN2-CD320 pathway is regulated by sphingolipids, specifically sphingosine, a naturally occurring and endogenous structural analogue of fingolimod, toward improving future MS therapies, Chun said. 

“It supports creating brain-targeted B12 formulations. In the future, this mechanism might also extend to novel treatments of other neuroinflammatory and neurodegenerative conditions.”

Source: Sanford-Burnham Prebys

New Drug with a Different Approach Holds Promise as a Treatment for Multiple Sclerosis

This is a pseudo-colored image of high-resolution gradient-echo MRI scan of a fixed cerebral hemisphere from a person with multiple sclerosis. Credit: Govind Bhagavatheeshwaran, Daniel Reich, National Institute of Neurological Disorders and Stroke, National Institutes of Health

Researchers have found in pre-clinical studies of a small molecule drug that it has promise as a potential new treatment for multiple sclerosis (MS). The results from the Centre for Addiction and Mental Health-led study have been published in the journal Science Advances.

Expanding on Dr Fang Liu’s earlier work that identified a novel drug target for the treatment of MS, she and her team have now created a small molecule compound that is effective in two different animal models of MS. This represents a key advancement that brings this MS research closer to the clinic to impact patient care.

MS is a progressive neurological disease that currently has no cure.

It is associated with a wide-range of debilitating symptoms, including problems with coordination, cognition, muscle weakness and depression. For unknown reasons, it is more common in northern latitudes and more than twice as common in women.

It is known that MS damages myelin, a protective sheath that forms around nerves in the brain and spinal cord. As the myelin damage is triggered by inflammation in the immune system, up until now all current drug treatments for MS target the immune system.

In this study, CAMH Senior Scientist Dr Fang Liu and her team treated MS in a completely different way – targeting the glutamate system. Study results showed that the newly synthesised lead compound not only reduced MS-like symptoms, it also may repair the damaged myelin in two different pre-clinical models of MS.

“Our compound had a stunning effect on rescuing myelin and motor function in the lab models, and I hope these effects will translate to the clinic to add to current treatments and bring new hope to patients with MS,” said Dr Liu.

“As with cancer chemotherapy drug cocktails, simultaneous targeting of the MS disease pathway at multiple points can have synergistic effects and result in better outcomes.”

Dr Iain Greig, Reader in Medicinal Chemistry at the University of Aberdeen, alongside his team, are working to turn the molecules identified by Dr Liu into advanced “drug-like” molecules suitable for continued development towards clinical use in patients.

He added: “In all my years as a medicinal chemist, I have never seen a more promising starting point for a drug development project. It has been a huge pleasure to be involved in this program and I am looking forward to continuing to drive it towards to the clinic.”

Much of the funding for this novel treatment for MS, which Dr. Fang and her team have been investigating for over a decade, has come from the Multiple Sclerosis Society of Canada and the National Multiple Sclerosis Society USA’s Fast Forward commercial research program.

“We are pleased to have helped enable the early development of a novel neuroprotective strategy for MS, and look forward to seeing it progress through the critical next stages needed to determine its potential benefits for people living with MS,” said Walt Kostich, PhD, head of the National MS Society (USA)’s Fast Forward commercial research programme.

Dr. Liu believes that the evidence of efficacy and tolerability generated in this study for the small molecule drug makes it a good candidate to be developed for human trials. The next steps in drug development will involve some further pre-clinical research, including investigating safety and stability of the compound. CAMH and the University of Aberdeen have already filed patent applications to protect this research and are actively seeking industry partners to further advance this work towards clinical trials over the next few years.

Source: Centre for Addiction and Mental Health

Light Therapy may Improve Symptoms of Alzheimer’s Disease

New meta-analysis included 15 randomised controlled trials involving 598 patients with Alzheimer’s disease and found improvements in sleep and psycho-behavioural symptoms.

Photo by Matteo Vistocco on Unsplash

Light therapy leads to significant improvements in sleep and psycho-behavioural symptoms for patients with Alzheimer’s disease, according to a new study published this week in the open-access journal PLOS ONE by Qinghui Meng of Weifang Medical University, China, and colleagues.

The cognitive decline associated with Alzheimer’s disease is often accompanied by sleep disturbances and psycho-behavioural symptoms including apathetic and depressive behaviour, agitation and aggression. Photobiomodulation is a non-pharmacological therapy that uses light energy to stimulate the suprachiasmic nucleus (SCN), a sleep modulator in the brain. Despite light therapy receiving increased attention as a potential intervention for Alzheimer’s, a systematic evaluation of its efficacy and safety has been unavailable.

In the new study, researchers searched multiple research databases to identify all randomised controlled trials related to light therapy intervention for Alzheimer’s disease or dementia. Fifteen high-quality trials with available methods and relevant outcomes were selected for further analysis. The included trials were written in English, published between 2005 and 2022, and performed in seven countries. They included a combined 598 patients.

The meta-analysis of all fifteen trials found that light therapy significantly improved sleep efficiency, increased interdaily stability (a measure of the strength of circadian rhythms), and reduced intradaily variability (a measure of how frequently someone transitions between rest and activity during the day). In patients with Alzheimer’s disease, light therapy also alleviated depression and reduced patient agitation and caregiver burden.

Given the limited sample sizes in studies included in this meta-analysis, the authors advocate for larger future studies, which could also explore if bright light exposure could cause any adverse behaviour in patients. They conclude that light therapy is a promising treatment option for some symptoms of Alzheimer’s disease.  

The authors add: “Light therapy improves sleep and psycho-behavioral symptoms in patients with Alzheimer’s disease and has relatively few side effects, suggesting that it may be a promising treatment option for patients with Alzheimer’s disease.”

Provided by PLOS One

Abnormally High Levels of HDL-C Linked to Dementia in Older Adults

Photo by Matteo Vistocco on Unsplash

Abnormally high levels of high density lipoprotein cholesterol (HDL-C), are associated with an increased risk of dementia in older adults, according to study led by Monash University. Researchers said very high levels of the ‘good cholesterol’ HDL-C linked to dementia risk in this study were uncommon and not diet related, but more likely to reflect a metabolic disorder. The findings may help doctors to recognise a group of older patients potentially at risk of dementia, particularly in those aged 75 and older.

Published in The Lancet Regional Health – Western Pacific, this is one of the largest studies of elevated HDL-C levels and dementia in initially healthy older people aged mostly over 70, enrolled in the ASPREE* study.

Over an average 6.3 years, participants with very high HDL-C (> 80mg/dL or > 2.07mmol/L) at study entry were observed to have a 27% higher risk of dementia compared to participants with optimal HDL-C levels, while those aged 75 years and older also showed a 42% increased risk compared to those with optimal levels.

Very high HDL-C levels were categorised as 80mg/dL (> 2.07mmol/L) or above.

The optimal level of HDL-C of 40 to 60mg/dL (1.03–1.55mmol/L) for men and 50 to 60mg/dL (1.55–2.07mmol/L) for women was generally beneficial for heart health.

Among 18 668 participants included in this analysis, 2709 had very high HDL-C at study entry, with 38 incidents of dementia in those aged less than 75 years with very high levels, and 101 in those aged 75 and more with very high levels.

First author and Monash University School of Public Health and Preventive Medicine senior research fellow Dr Monira Hussain said that further research was needed to explain why a very high HDL cholesterol level appeared to affect the risk of dementia.

Dr Hussain said these study findings could help improve our understanding of the mechanisms behind dementia, but more research was required.

“While we know HDL cholesterol is important for cardiovascular health, this study suggests that we need further research to understand the role of very high HDL cholesterol in the context of brain health,” she said.

“It may be beneficial to consider very high HDL cholesterol levels in prediction algorithms for dementia risk.”

*The Aspirin in Reducing Events in the Elderly (ASPREE) trial is a double-blind, randomised, placebo-controlled trial of daily aspirin in healthy older people. 

Source: Monash University

Nanoparticles from Coffee Grounds could Stall Neurodegenerative Disease Development

Photo by Mike Kenneally on Unsplash

Researchers may potentially have found a preventive solution for neurodegenerative disorders in the most unlikely of sources: used coffee grounds. The researchers found caffeic-acid based Carbon Quantum Dots (CACQDs) have the potential to protect brain cells from the damage caused by several neurodegenerative diseases – if the condition is triggered by factors such as obesity, age and exposure to pesticides and other toxic environmental chemicals.

Carbon Quantum Dots are essentially simple nanoparticles made of carbon that have found a growing number of applications, including bioimaging thanks to its fluorescent properties and as photochemical catalysts. Their active surfaces can be doped with different elements for desired effects, are biocompatible and can be produced simply from a range of organic substances such as lemon juice and used tea leaves.

The University of Texas at El Paso team behind the study was led by Jyotish Kumar, a doctoral student in the Department of Chemistry and Biochemistry, and overseen by Mahesh Narayan, PhD, a professor and Fellow of the Royal Society of Chemistry in the same department. Their work is described in the journal Environmental Research.

“Caffeic-acid based Carbon Quantum Dots have the potential to be transformative in the treatment of neurodegenerative disorders,” Kumar said.

“This is because none of the current treatments resolve the diseases; they only help manage the symptoms. Our aim is to find a cure by addressing the atomic and molecular underpinnings that drive these conditions.”

Neurodegenerative diseases, when they are in their early stages and are caused by lifestyle or environmental factors, share several traits.

These include elevated levels of free radicals in the brain, and the aggregation of fragments of amyloid-forming proteins that can lead to plaques or fibrils in the brain.

Kumar and his colleagues found that CACQDs were neuroprotective across test tube experiments, cell lines and other models of Parkinson’s disease when the disorder was caused by a pesticide called paraquat.

The CACQDs, the team observed, were able to remove free radicals or prevent them from causing damage and inhibited the aggregation of amyloid protein fragments without causing any significant side effects.

The team hypothesises that in humans, in the very early stage of a condition such as Alzheimer’s or Parkinson’s, a treatment based on CACQDs can be effective in preventing full-on disease.

“It is critical to address these disorders before they reach the clinical stage,” Narayan said.

“At that point, it is likely too late. Any current treatments that can address advanced symptoms of neurodegenerative disease are simply beyond the means of most people. Our aim is to come up with a solution that can prevent most cases of these conditions at a cost that is manageable for as many patients as possible.”

Caffeic acid belongs to a family of compounds called polyphenols, which are plant-based compounds known for their antioxidant, or free radical-scavenging properties. Caffeic acid is unique because it can penetrate the blood-brain barrier and is thus able to exert its effects upon the cells inside the brain, Narayan said.

In the simple one-step ‘green chemistry’ method, the team ‘cooked’ caffeic acid at 230°C for two hours to reorient the caffeic acid’s carbon structure and form CACQDs. The CACQDs were then extracted according to a molecular weight cutoff of 1kDa.

The sheer abundance of coffee grounds is what makes the process both economical and sustainable, Narayan said.

Source: University of Texas at El Paso

Nanoplastics Promote Conditions for the Development of Parkinson’s

Photo by FLY:D on Unsplash

Tiny fragments of plastic known as nanoplastics interact with a particular protein that is naturally found in the brain, creating changes linked to Parkinson’s disease and some types of dementia, according to a Duke University-led study.

In Science Advances, the researchers report that the findings create a foundation for a new area of investigation, fuelled by the timely impact of environmental factors on human biology.

“Parkinson’s disease has been called the fastest growing neurological disorder in the world,” said principal investigator, Andrew West, PhD, professor at Duke University School of Medicine.

“Numerous lines of data suggest environmental factors might play a prominent role in Parkinson’s disease, but such factors have for the most part not been identified.”

Improperly disposed plastics have been shown to break into very small pieces and accumulate in water and food supplies, and were found in the blood of most adults in a recent study.

“Our study suggests that the emergence of micro and nanoplastics in the environment might represent a new toxin challenge with respect to Parkinson’s disease risk and progression,” West said.

“This is especially concerning given the predicted increase in concentrations of these contaminants in our water and food supplies.”

West and colleagues in Duke’s Nicholas School of the Environment and the Department of Chemistry at Trinity College of Arts and Sciences found that nanoparticles of the plastic polystyrene — typically found in single use items such as disposable drinking cups and cutlery — attract the accumulation of the protein known as alpha-synuclein.

West said the study’s most surprising findings are the tight bonds formed between the plastic and the protein within the area of the neuron where these accumulations are congregating, the lysosome.

Researchers said the plastic-protein accumulations happened across three different models performed in the study – in test tubes, cultured neurons, and mouse models of Parkinson’s disease.

West said that questions remain about how such interactions might be happening within humans and whether the type of plastic might play a role.

“While microplastic and nanoplastic contaminants are being closely evaluated for their potential impact in cancer and autoimmune diseases, the striking nature of the interactions we could observe in our models suggest a need for evaluating increasing nanoplastic contaminants on Parkinson’s disease and dementia risk and progression,” West said.

“The technology needed to monitor nanoplastics is still at the earliest possible stages and not ready yet to answer all the questions we have,” he said.

Source: Duke University Medical Center

Study Discovers a New Driver of Brain Haemorrhage Formation

Source: CC0

A recent study has revealed a new culprit in the formation of brain haemorrhages that does not involve injury to the blood vessels, as previously believed. In the first-of-its kind study, researchers led by the University of California, Irvine discovered that interactions between aged red blood cells and brain capillaries can lead to cerebral microbleeds, offering deeper insights into how they occur and identifying potential new therapeutic targets for treatment and prevention.

The findings, published in the Journal of Neuroinflammation, describe how the team was able to watch the process by which red blood cells stall in the brain capillaries and then observe how the haemorrhage happens.

Cerebral microbleeds are associated with a variety of conditions that occur at higher rates in older adults, including hypertension, Alzheimer’s disease and ischaemic stroke.

“We have previously explored this issue in cell culture systems, but our current study is significant in expanding our understanding of the mechanism by which cerebral microbleeds develop,” said co-corresponding author Dr Mark Fisher, professor of neurology in UCI’s School of Medicine.

“Our findings may have profound clinical implications, as we identified a link between red blood cell damage and cerebral haemorrhages that occurs at the capillary level.”

The team exposed red blood cells to a chemical called tert-butyl hydroperoxide that caused oxidative stress; the cells were then marked with a fluorescent label and injected into mice.

Using two different methods, the researchers observed the red blood cells getting stuck in the brain capillaries and then being cleared out in a process called endothelial erythrophagocytosis.

As they moved out of the capillaries, microglia inflammatory cells engulfed the red blood cells, which led to the formation of a brain haemorrhage.

“It has always been assumed that in order for cerebral haemorrhage to occur, blood vessels need to be injured or disrupted. We found that increased red blood cell interactions with the brain capillaries represent an alternative source of development,” said co-corresponding author Xiangmin Xu, UCI professor of anatomy & neurobiology and director of the campus’s Center for Neural Circuit Mapping.

“We need to examine in detail the regulation of brain capillary clearance and also analyse how that process may be related to insufficient blood supply and ischaemic stroke, which is the most common form of stroke, to help advance the development of targeted treatments.”

Source: University of California – Irvine

Surgery-free Deep Brain Stimulation Could be New Treatment for Dementia

A new form of deep brain stimulation offers hope for an alternative treatment option for dementia, without the need for surgery.

Researchers at Imperial College London are leading the development of the technique, known as temporal interference (TI). This non-invasive method works by delivering electrical fields to the brain through electrodes placed on the patient’s scalp and head. Their initial findings, which are published in the journal Nature Neuroscience, could lead to an alternative treatment for brain diseases such as Alzheimer’s, and its associated memory loss.

Temporal interference

By targeting the overlapping electrical fields researchers were able to stimulate an area deep in the brain called the hippocampus, without affecting the surrounding areas – a procedure that until now required surgery to implant electrodes into the brain.

The approach has been successfully trialled with 20 healthy volunteers for the first time by a team at the UK Dementia Research Institute (UK DRI) at Imperial and the University of Surrey.

Their initial results show that when healthy adults perform a memory task whilst receiving TI stimulation it helped to improve memory function.

The team is now conducting a clinical trial in people with early-stage Alzheimer’s disease, where they hope TI could be used to improve symptoms of memory loss.

Dr Nir Grossman, from the Department of Brain Sciences at Imperial College London, who led the work said: “Until now, if we wanted to electrically stimulate structures deep inside the brain, we needed to surgically implant electrodes which of course carries risk for the patient, and can lead to complications.

“With our new technique we have shown for the first time, that it is possible to remotely stimulate specific regions deep within the human brain without the need for surgery. This opens up an entirely new avenue of treatment for brain diseases like Alzheimer’s which affect deep brain structures.”

Reaching deep brain regions

TI was first described by the team at Imperial College London in 2017 and shown to work in principle in mice.

This latest work, funded and carried out through the UK Dementia Research Institute, shows for the first time that TI is effective at stimulating regions deep within the human brain.

According to the researchers, this could have broad applications and will enable scientists to stimulate different deep brain regions to discover more about their functional roles, accelerating the discovery of new therapeutic targets.

Source: Imperial College London

Difficulty with Turning when Walking could be a Sign of Early Alzheimer’s

In a study published in Current Biology, people with early Alzheimer’s disease were found to have difficulty turning when walking. The new study used virtual reality and a computational model to further explore the intricacies of navigational errors previously observed in Alzheimer’s disease.

Researchers, led by Professor Neil Burgess and colleagues in the Space and Memory group at the UCL Institute of Cognitive Neuroscience, grouped participants into three categories: healthy younger participants (31 total), healthy elderly participants (36 total) and patients with mild cognitive impairment (43 total). They then asked them to complete a task while wearing virtual reality goggles, which allowed them to make real movements.

In the trial, participants walked an outbound route guided by numbered cones, consisting of two straight legs connected by a turn. They then had to return to their starting position unguided.

The task was performed under three different environmental conditions aimed at stressing the participant’s navigational skills: an unchanged virtual environment, the ground details being replaced by a plain texture, and the temporary removal of all landmarks from the virtual reality world.

The researchers found that people with early Alzheimer’s consistently overestimated the turns on the route and showed increased variability in their sense of direction. However, these specific impairments were not observed in the healthy older participants or people with mild cognitive impairment, who did not show underlying signs of Alzheimer’s.

This suggests that these navigational errors are specific to Alzheimer’s disease – rather than an extension of healthy ageing or general cognitive decline – and could help with diagnosis.

Joint first author, Dr Andrea Castegnaro (UCL Institute of Cognitive Neuroscience), said: “Our findings offer a new avenue for the early diagnosis of Alzheimer’s disease by focusing on specific navigational errors. However, we know that more work is needed to confirm these early findings.

Dr Castegnaro added, “Cognitive assessments are still needed to understand when the first cognitive impairments develop, and when it comes to existing spatial memory tests used in clinics, those often rely on verbal competence. Our tests aim to offer a more practical tool that doesn’t rely on language or cultural background.”

Source: University College of London