Category: IT in Healthcare

AI Analyses Fitbit Data to Predict Spine Surgery Outcomes

Photo by Barbara Olsen on Pexels

Researchers who had been using Fitbit data to help predict surgical outcomes have a new method to more accurately gauge how patients may recover from spine surgery.

Using machine learning techniques developed at the AI for Health Institute at Washington University in St. Louis, Chenyang Lu, the Fullgraf Professor in the university’s McKelvey School of Engineering, collaborated with Jacob Greenberg, MD, assistant professor of neurosurgery at the School of Medicine, to develop a way to predict recovery more accurately from lumbar spine surgery.

The results show that their model outperforms previous models to predict spine surgery outcomes. This is important because in lower back surgery and many other types of orthopaedic operations, the outcomes vary widely depending on the patient’s structural disease but also varying physical and mental health characteristics across patients. The study is published inĀ Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies.

Surgical recovery is influenced by both preoperative physical and mental health. Some people may have catastrophising, or excessive worry, in the face of pain that can make pain and recovery worse. Others may suffer from physiological problems that cause worse pain. If physicians can get a heads-up on the various pitfalls for each patient, that will allow for better individualized treatment plans.

“By predicting the outcomes before the surgery, we can help establish some expectations and help with early interventions and identify high risk factors,” said Ziqi Xu, a PhD student in Lu’s lab and first author on the paper.

Previous work in predicting surgery outcomes typically used patient questionnaires given once or twice in clinics that capture only one static slice of time.

“It failed to capture the long-term dynamics of physical and psychological patterns of the patients,” Xu said. Prior work training machine learning algorithms focus on just one aspect of surgery outcome “but ignore the inherent multidimensional nature of surgery recovery,” she added.

Researchers have used mobile health data from Fitbit devices to monitor and measure recovery and compare activity levels over time but this research has shown that activity data, plus longitudinal assessment data, is more accurate in predicting how the patient will do after surgery, Greenberg said.

The current work offers a “proof of principle” showing, with the multimodal machine learning, doctors can see a much more accurate “big picture” of all the interrelated factors that affect recovery. Proceeding this work, the team first laid out the statistical methods and protocol to ensure they were feeding the AI the right balanced diet of data.

Prior to the current publication, the team published an initial proof of principle in Neurosurgery showing that patient-reported and objective wearable measurements improve predictions of early recovery compared to traditional patient assessments. In addition to Greenberg and Xu, Madelynn Frumkin, a PhD psychological and brain sciences student in Thomas Rodebaugh’s laboratory in Arts & Sciences, was co-first author on that work. Wilson “Zack” Ray, MD, the Henry G. and Edith R. Schwartz Professor of neurosurgery in the School of Medicine, was co-senior author, along with Rodebaugh and Lu. Rodebaugh is now at the University of North Carolina at Chapel Hill.

In that research, they show that Fitbit data can be correlated with multiple surveys that assess a person’s social and emotional state. They collected that data via “ecological momentary assessments” (EMAs) that employ smart phones to give patients frequent prompts to assess mood, pain levels and behaviour multiple times throughout day.

We combine wearables, EMA -and clinical records to capture a broad range of information about the patients, from physical activities to subjective reports of pain and mental health, and to clinical characteristics,” Lu said.

Greenberg added that state-of-the-art statistical tools that Rodebaugh and Frumkin have helped advance, such as “Dynamic Structural Equation Modeling,” were key in analyzing the complex, longitudinal EMA data.

For the most recent study they then took all those factors and developed a new machine learning technique of “Multi-Modal Multi-Task Learning (M3TL)” to effectively combine these different types of data to predict multiple recovery outcomes.

In this approach, the AI learns to weigh the relatedness among the outcomes while capturing their differences from the multimodal data, Lu adds.

This method takes shared information on interrelated tasks of predicting different outcomes and then leverages the shared information to help the model understand how to make an accurate prediction, according to Xu.

It all comes together in the final package producing a predicted change for each patient’s post-operative pain interference and physical function score.

Greenberg says the study is ongoing as they continue to fine tune their models so they can take these more detailed assessments, predict outcomes and, most notably, “understand what types of factors can potentially be modified to improve longer term outcomes.”

Source: Washington University in St. Louis

Earn CPD Points with EthiQal’s Webinar on Record Keeping

On Wednesday 5 June at 18:00, EthiQal cordially invites you to attend their ethics webinar, “Documenting care: Effective record-keeping and requests for records”.

Hosted by Dr Hlombe Makuluma, Medicolegal Advisor at EthiQal, this webinar will be co-presented by two admitted attorneys, Mashooma Parker and Jessica Viljoen, who are both legal advisors within the claims team at EthiQal. The 90-minute session will cover compliance for record-keeping requirements as well as dealing with requests for patient records from patients and third parties.

Participants will gain valuable insights to ethically enhance their practiceā€™s visibility and reach, fostering responsible and compliant advertising practices.

Mashooma Parker is a skilled Legal Advisor within the Claims & Legal team at EthiQal, specialising in medical malpractice. With a strong background in the legal field and a passion for assisting healthcare practitioners, Mashooma brings a wealth of expertise to navigate the complexities that arise with patients and third parties. Hosting the first topic, She will cover the requirements for healthcare practitioners to ensure quality record-keeping compliance with Booklet 9 of the HPCSAā€™s Ethical Guidelines.

Jessica Viljoen is an admitted attorney and legal advisor specialising in professional indemnity insurance for healthcare practitioners, and medical malpractice law. With her extensive experience within the medico-legal space, including her years of litigation experience, Jessica leverages her industry knowledge to provide legal advice and assistance to all specialties of medical practitioners throughout South Africa. She will present the second part of the talk, which will deal with Patient and Third-party requests for patient records and how to ensure compliance with the Promotion of Access to Information Act 2 of 2000.

The speakers will offer some useful tips from a medico-legal risk management perspective for health practitioners to be cognisant of, as well as to work through some practical examples to illustrate the importance of the topic.

At least one hour’s attendance on the Zoom Platform is required to earn CPD points, and for those unable to watch it live, a recording will be made available.

Click here to register now

Best Practice in POPIA Compliance in TeleHealth

By Wayne Janneker, Executive for Mining Industrial and Health Management at BCX

In the intricate field of healthcare, where privacy and patientā€™s data security are of utmost importance the Protection of Personal Information Act (POPIA) emerges as a cornerstone legislation. Specifically crafted to safeguard individual privacy, POPIA carries profound implications for the healthcare sector, particularly in the protection of a patient’s medical data.

POPIA establishes a framework for healthcare professionals, mandating that they exert reasonable efforts to inform patients before obtaining personal information from alternative sources. The Act places significant emphasis on the secure and private management of patient’s medical records, instilling a sense of responsibility within the healthcare community.

Section 26 of the Act unequivocally prohibits the processing of personal health information, yet Section 32(1) introduces a caveat. This section extends exemptions to medical professionals and healthcare institutions, but only under the condition that such information is essential for providing proper treatment and care pathways. It’s a delicate balance, ensuring the patient’s well-being while respecting the boundaries of privacy.

A breach of POPIA transpires when personal information is acquired without explicit consent, accessed unlawfully, or when healthcare professionals fall short of taking reasonable steps to prevent unauthorised disclosure, potentially causing harm or distress to the patient. The consequences for non-compliance are severe, ranging from substantial monetary compensation to imprisonment.

For healthcare providers, especially those venturing into the realm of telehealth services, navigating POPIA compliance is of critical importance. Good clinical practices become the guiding principles in this journey of upholding patient confidentiality and privacy.

Let’s delve into the essentials of ensuring privacy in healthcare, where understanding the nuances of privacy laws becomes the bedrock for healthcare providers. It’s not merely about keeping up with regulations; it’s about aligning practices with the legal landscape, creating a solid foundation for what follows.

When we shift the focus to telehealth, selecting platforms tailored to meet POPIA requirements becomes even more crucialā€”it’s imperative. Envision these platforms as protectors of patient information, featuring end-to-end encryption and secure data storage, creating a fortress around sensitive data. But we can’t merely stop there; we need to be proactive. Regular risk assessments become the secret weapon, requiring healthcare providers to stay ahead of the game, constantly evolving, and nipping potential security threats in the bud.

Managing the human elementā€”the healthcare teamā€”becomes significant. Educating them about compliance, data security, and the significance of patient confidentiality adds another layer of protection. When everyone comprehends their role in maintaining compliance, it’s akin to having a team of protectors ensuring the safety of patient data.

Establishing clear policies and procedures around telehealth use, patient consent, and the secure handling of patient data is our compass for ethical and legal navigation. It’s not just about ticking boxes; it’s about creating a roadmap that ensures we’re on the right path.

Informed consent is the cornerstone of this journey. It’s about building trust with patients by transparently communicating through secure communication channels, encryption of patient data, stringent access controls, regular internal audits, and airtight data breach response plans, all of which forms part of a strategy, ensuring a state of readiness to tackle any challenges that come our way.

In this dynamic landscape, technology can’t be static. Regular updates to telehealth technology, software, and security measures are our way of staying in sync with evolving threats and regulations.

Healthcare providers aren’t necessarily experts on the Act or technology, which is why consulting with legal experts specialising in healthcare can provide accurate information on which to base decisions. It ensures that practices aren’t just compliant but resilient against any legal scrutiny that may come their way.

The final and most crucial element is the patient. Their feedback is like a map, guiding healthcare providers to areas of improvement. By monitoring and seeking insights from patients regarding their telehealth experiences, providers uncover ways to enhance their compliance measures.

In embracing these best practices and remaining vigilant to changes, healthcare practitioners and providers can navigate POPIA compliance successfully and deliver high-quality health and telehealth services. It’s a commitment to patient privacy, data security, and the evolving landscape of healthcare regulations that will propel the industry forward.

When it Comes to Healthcare, AI Still Needs Human Supervision

Photo by Tara Winstead on Pexels

State-of-the-art artificial intelligence systems known as large language models (LLMs) are poor medical coders, according to researchers at the Icahn School of Medicine at Mount Sinai. Their study, published in NEJM AI, emphasises the necessity for refinement and validation of these technologies before considering clinical implementation.

The study extracted a list of more than 27 000 unique diagnosis and procedure codes from 12 months of routine care in the Mount Sinai Health System, while excluding identifiable patient data. Using the description for each code, the researchers prompted models from OpenAI, Google, and Meta to output the most accurate medical codes. The generated codes were compared with the original codes and errors were analysed for any patterns.

The investigators reported that all of the studied large language models, including GPT-4, GPT-3.5, Gemini-pro, and Llama-2-70b, showed limited accuracy (below 50%) in reproducing the original medical codes, highlighting a significant gap in their usefulness for medical coding. GPT-4 demonstrated the best performance, with the highest exact match rates for ICD-9-CM (45.9%), ICD-10-CM (33.9%), and CPT codes (49.8%).

GPT-4 also produced the highest proportion of incorrectly generated codes that still conveyed the correct meaning. For example, when given the ICD-9-CM description “nodular prostate without urinary obstruction,” GPT-4 generated a code for “nodular prostate,” showcasing its comparatively nuanced understanding of medical terminology. However, even considering these technically correct codes, an unacceptably large number of errors remained.

The next best-performing model, GPT-3.5, had the greatest tendency toward being vague. It had the highest proportion of incorrectly generated codes that were accurate but more general in nature compared to the precise codes. In this case, when provided with the ICD-9-CM description “unspecified adverse effect of anesthesia,” GPT-3.5 generated a code for “other specified adverse effects, not elsewhere classified.”

“Our findings underscore the critical need for rigorous evaluation and refinement before deploying AI technologies in sensitive operational areas like medical coding,” says study corresponding author Ali Soroush, MD, MS, Assistant Professor of Data-Driven and Digital Medicine (D3M), and Medicine (Gastroenterology), at Icahn Mount Sinai. “While AI holds great potential, it must be approached with caution and ongoing development to ensure its reliability and efficacy in health care.”

Source: The Mount Sinai Hospital / Mount Sinai School of Medicine

AI Helps Clinicians to Assess and Treat Leg Fractures

Photo by Tima Miroshnichenko on Pexels

By using artificial intelligence (AI) techniques to process gait analyses and medical records data of patients with leg fractures, researchers have uncovered insights on patients and aspects of their recovery.

The study, which is published in the Journal of Orthopaedic Research, uncovered a significant association between the rates of hospital readmission after fracture surgery and the presence of underlying medical conditions. Correlations were also found between underlying medical conditions and orthopaedic complications, although these links were not significant.

It was also apparent that gait analyses in the early postinjury phase offer valuable insights into the injuryā€™s impact on locomotion and recovery. For clinical professionals, these patterns were key to optimising rehabilitation strategies.

ā€œOur findings demonstrate the profound impact that integrating machine learning and gait analysis into orthopaedic practice can have, not only in improving the accuracy of post-injury complication predictions but also in tailoring rehabilitation strategies to individual patient needs,ā€ said corresponding author Mostafa Rezapour, PhD, of Wake Forest University School of Medicine. ā€œThis approach represents a pivotal shift towards more personalised, predictive, and ultimately more effective orthopaedic care.ā€

Dr. Rezapour added that the study underscores the critical importance of adopting a holistic view that encompasses not just the mechanical aspects of injury recovery but also the broader spectrum of patient health. ā€œThis is a step forward in our quest to optimize rehabilitation strategies, reduce recovery times, and improve overall quality of life for patients with lower extremity fractures,ā€ he said.

Source: Wiley

Admin and Ethics should be the Basis of Your Healthcare AI Stratetgy

Technology continues to play a strong role in shaping healthcare. In 2023, the focus was on how Artificial Intelligence (AI),  became significantly entrenched in patient records, diagnosis and care. Now in 2024 the focus is on the ethical aspects of AI.  Many organisations including practitioner groups, hospitals and medical associations are putting together AI Codes of Conduct, with new legislation planning to be passed in countries such as the USA.

The entire patient journey has benefited from the use of AI, in tangible ways that we can understand. From online bookings, the sharing of information with electronic health records, keyword diagnosis, sharing of visual scans, e-scripts, easy claims, SMSā€™s and billing, are all examples of how software systems are incorporated into practices to facilitate a streamlined experience for both the patient and doctor. *But although 75% of medical professionals agree on the transformation abilities of AI, only 6% have implemented an AI strategy.

Strategies need to include ethical considerations

CompuGroup Medical South Africa, (CGM SA), a leading international MedTech company that has spent over 20 years designing software solutions for the healthcare industry, has identified one main area that seems to constantly be the topic for ethical consideration.

This is the sharing of patient electronic health records or EHRā€™s. On one hand the wealth of information provided in each EHR – from a patientā€™s medical history, demographics, their laboratory test results over time, medicine prescribed, a history of medical procedures, X-rays to any medical allergies – offers endless opportunities for real time patient care. On the other hand, there seems to be a basic mistrust of how these records will be shared and stored, no one wants their personal medical information to end up on the internet.

But thereā€™s also the philosophical view that although you might not want your info to be public record, it still has the ability to benefit the care of thousands of people. If we want a learning AI system that adapts as we do, if we want a decision making support system that is informed by past experiences, then the sharing of data should be viewed as a tool and no longer a privacy barrier.

Admin can cause burnout

Based on their interactions with professionals, CGM has informally noted that healthcare practices spend 73% of their time dealing with administrative tasks. This can be broken down into 38% focusing on EHR documentation and review, 19% related to insurance and billing, 11% on tests, medications and other orders and the final 6% on clinical planning and logistics.

Even during the consultation doctors can spend up to 40% of their time taking clinical notes. Besides the extra burden that this places on health care practices, this also leads to less attention being paid to the patient and still requires 1-2 hours of admin in the evenings. (Admin being the number one cause of burnout in clinicians and too much screen time during interactions being the number one complaint by patients.)

The solution

The ability for medical practitioners to implement valuable and effective advanced technical software, such as Autoscriber, will assist with time saving, data quality and overall job satisfaction. Autoscriber is an AI engine designed to ease the effort required when creating clinical notes by turning the consultation between patient and doctor into a structured summary that includes ICD-10 codes which is the standard method of classification of diseases used by South African medical professionals    

It identifies clinical facts in real time, including medications and symptoms. It then orders and summarises the data in a format ready for import into the EHR, creating a more detailed and standardised report on each patient encounter, allowing for a more holistic patient outcome. In essence, with the introduction of Autoscriber into the South African market, CGM seeks to aid practitioners in swiftly creating precise and efficient clinical records, saving them from extensive after-hours commitments.

Dilip Naran, VP of Product Architecture at CGM SA explains: ā€œIt is clear that AI will not replace healthcare professionals, but it will augment their capabilities to provide superior patient care. Ethical considerations are important but should not override patient care or safety. The Autoscriber solution provides full control to the HCP to use, edit or discard the transcribed note ensuring that these notes are comprehensive, attributable and contemporaneous.ā€

Virtual Reality Sessions can Lessen Cancer Pain, Trial Shows

Photo by Bradley Hook on Pexels

Hospitalised cancer patients who engaged in a 10-minute virtual reality (VR) session experienced significantly lessened pain in a trial published inĀ CANCER, a peer-reviewed journal of the American Cancer Society. Participants still experienced sustained benefits a day later.

Most cancer patients experience pain, and treatment usually involves medications including opioids. VR sessions that immerse the user in new environments have been shown to be a noninvasive and nonpharmacologic way to lessen pain in different patient populations, but data are lacking in individuals with cancer. To investigate, Hunter Groninger, MD, of Georgetown University School of Medicine and MedStar Health and his colleagues randomized 128 adults with cancer with moderate or severe pain to a 10-minute immersive VR intervention involving calm, pleasant environments or to a 10-minute two-dimensional guided imagery experience on an iPad tablet.

The investigators found that both interventions lessened pain, but VR sessions had a greater impact. Based on patient-reported scores from 0 to 10, patients in the guided imagery group reported an average decrease of 0.7 in pain scores, whereas those in the VR group reported an average drop of 1.4. Twenty four hours after the assigned intervention, participants in the VR group reported sustained improvement in pain severity (1.7 points lower than baseline before the VR intervention) compared with participants in the guided imagery group (only 0.3 points lower than baseline before the active control intervention).

Participants assigned to the VR intervention also reported improvements related to pain ā€œbothersomenessā€ (how much the pain bothered them, regardless of the severity of the pain) and general distress, and they expressed satisfaction with the intervention. 

ā€œResults from this trial suggest that immersive VR may be a useful non-medication strategy to improve the cancer pain experience,ā€ said Dr Groninger. ā€œWhile this study was conducted among hospitalized patients, future studies should also evaluate VR pain therapies in outpatient settings and explore the impact of different VR content to improve different types of cancer-related pain in different patient populations. Perhaps one day, patients living with cancer pain will be prescribed a VR therapy to use at home to improve their pain experience, in addition to usual cancer pain management strategies like pain medications.ā€

Source: Wiley

The Digital Nurse: Redefining the Future of Healthcare in South Africa

Sandra Sampson, Director at Allmed

By Sandra Sampson, Director at Allmed

The South African healthcare landscape is undergoing a transformative shift, driven by the rapid advancement of technology. At the forefront of this change is the rise of the “digital nurse,” a testament to the increasing integration of technology into the nursing profession. This transformation is not only streamlining processes; it is addressing critical challenges like the nation’s nurse shortage while ultimately improving patient care.

Embracing convenience and accessibility

Virtual platforms have become commonplace in the nursing world, facilitating efficient and accessible professional development for nurses through online meetings, networking opportunities, and educational resources. This fosters a more connected and knowledgeable nursing community, better equipped to serve patients.

Telehealth consultations, another facet of digital nursing currently revolutionising patient care, provide convenient and accessible medical consultations from the comfort of one’s home, eliminating long wait times and unnecessary travel.

Mitigating nurse shortages and ensuring quality care

South Africa grapples with a significant nurse shortage, placing a strain on the healthcare system to which digital nursing offers a practical potential solution. By leveraging technology, nurses can effectively manage larger patient volumes, reducing the burden on the existing workforce and optimising resource allocation. Remote monitoring systems and AI-powered tools further empower nurses by providing real-time patient data and facilitating early intervention, ultimately improving the quality of care delivered.

Additionally, embracing technology ensures that patients, even in underserved areas, receive quality care. The efficiency gained through virtual platforms allows nurses to allocate their time effectively, addressing minor health concerns remotely and reducing the strain on healthcare facilities for non-emergency cases.

However, it must be pointed out that although leveraging technology allows nurses to effectively manage larger patient volumes, which can alleviate the strain on the current system, this doesn’t necessarily mean fewer nurses are needed, but rather that technology empowers existing numbers to reach a wider patient base to deliver more efficient, personalised care.

Evolving alongside technology: the digital nurse of tomorrow

As the healthcare industry embraces digital technologies, the role of the nurse will continue to expand. While traditional nursing skills will remain essential, the “digital nurse” of the future must possess additional competencies.Ā  Acquiring proficiency in digital tools and equipment, along with the capability to interpret and analyse digital data, will be crucial for delivering effective patient care. However, the most critical attribute for the digital nurse will be the willingness to adapt and embrace constant technological advancements. This will require a mindset shift that comes with acknowledging that traditional methods might not be sufficient in the face of evolving patient needs.

The challenges and opportunities in change

While the adoption of digital nursing brings numerous benefits, challenges remain. Resistance from individuals accustomed to traditional healthcare practices is one hurdle. However, with the younger generation being more adaptable, the shift towards digital nursing is expected to gain wider acceptance as technology advances. To ensure the success of this digital-first healthcare, it will be necessary to focus our attention on upskilling, which means recognising that continuous training and development programs are vital for nurses to remain proficient in the face of change.

On the flip side, a change in perspective from nursing professionals themselves will be necessary. This means embracing a growth mindset and being open towards new technologies to adapt and thrive in the digital age. Lastly, healthcare professionals as a whole need to bear in mind that transformation is essential to meet the evolving needs of patients, which includes catering to a growing preference for digital healthcare solutions. Continuing to meet the needs of patients is the only guaranteed way for nursing professionals to ensure their relevance in the future. By embracing technology and fostering a culture of continuous learning, South Africa can empower its nurses to become the digital healthcare leaders of tomorrow.

AI-based App can Help Physicians Diagnose Melanomas

3D structure of a melanoma cell derived by ion abrasion scanning electron microscopy. Credit: Sriram Subramaniam/ National Cancer Institute

A mobile app that uses artificial intelligence, AI, to analyse images of suspected skin lesions can diagnose melanoma with very high precision. This is shown in a study led from Linkƶping University in Sweden where the app has been tested in primary care. The results have been published in theĀ British Journal of Dermatology.

“Our study is the first in the world to test an AI-based mobile app for melanoma in primary care in this way. A great many studies have been done on previously collected images of skin lesions and those studies relatively agree that AI is good at distinguishing dangerous from harmless ones. We were quite surprised by the fact that no one had done a study on primary care patients,” says Magnus Falk, senior associate professor at the Department of Health, Medicine and Caring Sciences at Linkƶping University, specialist in general practice at Region Ɩstergƶtland, who led the current study.

Melanoma can be difficult to differentiate from other skin changes, even for experienced physicians. However, it is important to detect melanoma as early as possible, as it is a serious type of skin cancer.

There is currently no established AI-based support for assessing skin lesions in Swedish healthcare.

“Primary care physicians encounter many skin lesions every day and with limited resources need to make decisions about treatment in cases of suspected skin melanoma. This often results in an abundance of referrals to specialists or the removal of skin lesions, which in the majority of cases turn out to be harmless. We wanted to see if the AI support tool in the app could perform better than primary care physicians when it comes to identifying pigmented skin lesions as dangerous or not, in comparison with the final diagnosis,” says Panos Papachristou, researcher affiliated with Karolinska Institutet and specialist in general practice, main author of the study and co-founder of the company that developed the app.

And the results are promising.

“First of all, the app missed no melanoma. This disease is so dangerous that it’s essential not to miss it. But it’s almost equally important that the AI decision support tool could acquit many suspected skin lesions and determine that they were harmless,” says Magnus Falk.

In the study, primary care physicians followed the usual procedure for diagnosing suspected skin tumours. If the physicians suspected melanoma, they either referred the patient to a dermatologist for diagnosis, or the skin lesion was cut away for tissue analysis and diagnosis.

Only after the physician decided how to handle the suspected melanoma did they use the AI-based app. This involves the physician taking a picture of the skin lesion with a mobile phone equipped with an enlargement lens called a dermatoscope. The app analyses the image and provides guidance on whether or not the skin lesion appears to be melanoma.

To find out how well the AI-based app worked as a decision support tool, the researchers compared the app’s response to the diagnoses made by the regular diagnostic procedure.

Of the more than 250 skin lesions examined, physicians found 11 melanomas and 10 precursors of cancer, known asĀ in situĀ melanoma. The app found all the melanomas, and missed only one precursor. In cases where the app responded that a suspected lesion was not a melanoma, includingĀ in situĀ melanoma, there was a 99.5% probability that this was correct.

“It seems that this method could be useful. But in this study, physicians weren’t allowed to let their decision be influenced by the app’s response, so we don’t know what happens in practice if you use an AI-based decision support tool. So even if this is a very positive result, there is uncertainty and we need to continue to evaluate the usefulness of this tool with scientific studies,” says Magnus Falk.

The researchers now plan to proceed with a large follow-up primary care study in several countries, where use of the app as an active decision support tool will be compared to not using it at all.

Source: Linkƶping University

Harnessing Technology to Improve Tuberculosis Outcomes

Dr Phathokuhle Zondi, Clinical Lead: Unu Health

Few realise the extent of the global burden of tuberculosis (TB) or know how many people still succumb to this disease every year. The Centres for Disease Control in the United States estimates that two billion people ā€“ a quarter of the worldā€™s population ā€“ may be infected with TB, with 10.6Ā million becoming ill each year.Ā Although TB is preventable and treatable, around 3Ā 500 people lose their lives to it every day, making up an annual mortality rate of 1.3Ā million people. This means that TB ranks third to only COVID-19 and HIV/Aids as the worldā€™s most deadly infectious disease.Ā 

These statistics are alarming and demand immediate attention from all sectors of society. It is crucial to recognise the potential of technology and digital platforms in revolutionising treatment outcomes. By harnessing the power of innovation, we can transform the way in which TB is diagnosed, treated and managed, ultimately saving lives and reducing the burden of this disease.

Equally as sobering is the fact that around 30 percent of people who become ill with TB are missed by healthcare screenings and do not get the care they need, leading to poor outcomes and an increased spread of the disease, especially in remote, rural and underserved communities. People infected with TB do not necessarily become ill but can pass on the bacteria that causes the infection to between ten and fifteen other people through coughing, sneezing or the transfer of saliva. Approximately 10% of those infected go on to develop an active form of disease at some time in their lives.

TB in South Africa

In South Africa, the first-ever National Tuberculosis Prevalence Survey, published in 2018, found that the country is one of 30 countries with the highest prevalence of TB in the world. When adjusted for population size, it is often ranked as the country with the highest prevalence in the word.

The power of digital healthcare has the potential to change this scenario radically. The greatest challenges we face are the low rate of diagnosis and poor access to ā€“ and compliance with ā€“ treatment. Thatā€™s where digital platforms have such a significant role to play.

How digital can make a difference

Digital health platforms have the potential to revolutionise the fight against TB by improving early detection, enhancing treatment adherence and strengthening healthcare delivery systems. Through the integration of mobile applications, telemedicine, artificial intelligence (AI) and big data analytics, we can address the key challenges of TB diagnosis, treatment access and patient support.

Firstly, digital tools enable early detection and diagnosis of TB cases. Advanced imaging techniques, supported by AI algorithms, can swiftly identify TB-related abnormalities in medical images, facilitating prompt intervention and preventing the progression of the disease. Predictive analytics can also forecast TB outbreaks and hotspot areas, enabling healthcare authorities to take proactive measures to contain the spread of the disease.

Secondly, digital health platforms facilitate remote consultations and monitoring, which is particularly beneficial for patients in remote or underserved areas. By providing timely medical intervention and personalised support, these platforms promote treatment adherence and improve patient outcomes.

Thirdly, mobile health applications empower patients to actively participate in their care management. Through features such as medication reminders, digital health checks and access to educational resources, individuals can adhere to treatment protocols better, ultimately contributing to improved health outcomes.

In addition, digital health platforms streamline healthcare delivery by facilitating data interoperability and real-time monitoring of TB trends. Innovative technologies such as TB Check, the free service application of the South African National Department of Health, are revolutionising TB testing as they are being used to determine the risk of contracting TB and to provide guidelines on how to access testing and treatment.

Further, applications such as One Impact, a comprehensive digital health platform, connects individuals with TB support groups, provides access to TB services and enables the reporting of difficulties in accessing care. By leveraging such platforms, national TB programmes can gain valuable insights into the needs and concerns of affected communities, leading to more responsive and effective service delivery.

TB is treatable and curable, especially when patients are diagnosed early, have access to the medication they need and can be carefully monitored throughout their treatment programme.

As we observe World TB Day on 24 March, it is encouraging to know that the integration of digital health platforms provides immense promise in transforming TB outcomes. To realise this potential, collaboration among governments, healthcare providers, technology companies and civil society organisations is essential. By prioritising investment in innovative solutions and leveraging digital technologies, we can accelerate progress towards the elimination of TB and save countless lives. It is time to harness the power of technology to combat TB and create a healthier, TB-free world for all.