Category: Injury & Trauma

Legal Review – Subrogation: Medical Schemes Act on Motor Vehicle Accidents Payments

Photo by Pixabay

John Letsoalo – Senior Manager; Legal Services

Mpho Sehloho – Senior Analyst – Benefits Management

In the ensuing court battle between Discovery Health and the Road Accident Fund (RAF) over reimbursements to be paid on motor vehicle claims, medical schemes members had always sought clarity or a position from the Council for Medical Schemes regarding this. In normative terms, the CMS is not obliged to release commentary on matters remote to its mandate, however, as a responsible regulator, it became a necessary act to clear any anomality.

Medical scheme members usually do not always have the full understating of the arrangements between RAF and medical schemes. At best, members sometimes have difficulty engaging with their scheme’s rules or RAF due to language barrier or be it of a technical nature of the matter.

In terms of the Medical Schemes Act 131 of 1998 (the “MSA”), Medical Schemes undertake liability in return for a contribution by among others granting assistance in defraying expenditure incurred in connection with the rendering of any relevant health services.

MSA further obliges medical schemes to pay for Prescribed Minimum Benefits (PMB), which include any emergency medical condition, under which motor vehicle claims could fall, in full. Unless a claim is specifically excluded in terms of the schemes’ rules and/or does not meet the criteria in terms of the definition of relevant healthcare, the medical scheme must still pay.

Most medical schemes provide for the handling of motor vehicle claims in their rules, wherein members of medical aid can claim compensation from the Road Accident Fund (the “RAF”) for such claims and any future healthcare services which may arise due to such motor vehicle accident. 

It is also common cause that where RAF is responsible for claims, which a medical scheme has paid in terms of its rules and the MSA, that the RAF should refund to such medical scheme the amounts paid. Members of medical schemes who would have claimed directly from the RAF and received compensation for such claims, must also pay such amounts back to the medical scheme. This is commonly known as subrogation.

Should a member not receive any compensation from the RAF even after claiming, the scheme remains liable for the costs of the treatment subject to the registered scheme rules and must not be required to repay/refund such funds to the scheme.

The scheme may, however, attempt to recover such amounts paid from the RAF for the benefit of its members.

Subrogation allows medical schemes to minimise losses as a result of these claims and keep members’ contributions reasonable, by holding responsible parties accountable. It also prevents members from being “overcompensated” or unjustifiably enriched for the loss since they should not receive double compensation from both the medical scheme claim payout and the recovery from the RAF.

It must be emphasized that the financial risk associated with health interventions for which the need is uncertain is equitably shared within the covered population through a risk pool managed by medical schemes under the Medical Schemes Act. Therefore, CMS cannot condone a situation where members of medical schemes are forced to be out of pocket due to the non-payment of medical costs by RAF where these have since been paid out by medical schemes.

In line with our mandate under Section 7 of the Medical Schemes Act, it is not in the members interest if medical schemes are required to claw back payment made on behalf of members due to non-payment of these costs by RAF.

Moreover, the non-recovery of these costs by medical schemes negatively and unfairly withdraws from the entire risk pool that is aimed at benefitting the whole membership.

The World Health Organization (WHO) defines pooling as “…accumulation and management of revenues in such a way as to ensure that the risk of having to pay for healthcare is borne by all members within the pool, not by each contributor individually…” (WHO, 2000).

By implication, the refusal to refund medical schemes by RAF leads to the unfair deterioration of the entire risk pool funds.

Within this background, CMS believes that the refusal to refund medical schemes by RAF is not in line with the provisions of the Medical Schemes Act and it is not in the interest of beneficiaries of medical schemes.

DISCLAIMER: COUNCIL FOR MEDICAL SCHEMES. 2023

This document has been prepared by the author(s) from the Council for Medical Schemes Legal Services Unit and Benefits Management Unit. The views and information expressed in this article are for information purposes only. CMS cannot be held liable for any incorrectness of statements and statistical errors. Recommendations and conclusions are based on the author(s) research outcomes/findings and does not necessarily espouse or state as a CMS policy stance. The information is subject to change without notice. Companies and individuals wishing to use the information must reference the CMS in company reports, news reports, interviews, panel discussions etc.

Depression from Traumatic Brain Injury may be a Distinct Disease

Photo by Anna Shvets on Pexels

A new study suggests that depression after traumatic brain injury (TBI) could be a clinically distinct disorder rather than traditional major depressive disorder. The findings, which are published in Science Translational Medicine, hold important implications for patient treatment.

“Our findings help explain how the physical trauma to specific brain circuits can lead to development of depression. If we’re right, it means that we should be treating depression after TBI like a distinct disease,” said corresponding author Shan Siddiqi, MD, from Brigham and Women’s Hospital,. “Many clinicians have suspected that this is a clinically distinct disorder with a unique pattern of symptoms and unique treatment response, including poor response to conventional antidepressants – but until now, we didn’t have clear physiological evidence to prove this.”

Siddiqi, who led the study, was motivated by a patient he shared with David Brody, MD, PhD, a co-author on the study and a neurologist at Uniformed Services University. The two started a small clinical trial that used personalised brain mapping to target brain stimulation as a treatment for TBI patients with depression. In the process, they noticed a specific pattern of abnormalities in these patients’ brain maps.

The current study included 273 adults with TBI, usually from sports injuries, military injuries, or car accidents. People in this group were compared to other groups who did not have a TBI or depression, people with depression without TBI, and people with posttraumatic stress disorder. Study participants went through a resting-state functional connectivity MRI, a brain scan that looks at how oxygen is moving in the brain. These scans gave information about oxygenation in up to 200 000 points in the brain at about 1000 different points in time, leading to about 200 million data points in each person. Based on this information, a machine learning algorithm was used to generate an individualised map of each person’s brain.

The location of the brain circuit involved in depression was the same among people with TBI as people without TBI, but the nature of the abnormalities was different. Connectivity in this circuit was decreased in depression without TBI and was increased in TBI-associated depression. This implies that TBI-associated depression may be a different disease process, leading the study authors to propose a new name: “TBI affective syndrome.”

“I’ve always suspected it isn’t the same as regular major depressive disorder or other mental health conditions that are not related to traumatic brain injury,” said Brody. “There’s still a lot we don’t understand, but we’re starting to make progress.”

With so much data, the researchers were not able to do detailed assessments of each patient beyond brain mapping. To overcome this limitation, investigators would like to assess participants’ behaviour in a more sophisticated way and potentially define different kinds of TBI-associated neuropsychiatric syndromes.

Siddiqi and Brody are also using this approach to develop personalized treatments. Originally, they set out to design a new treatment in which they used this brain mapping technology to target a specific brain region for people with TBI and depression, using transcranial magnetic stimulation (TMS). They enrolled 15 people in the pilot and saw success with the treatment. Since then, they have received funding to replicate the study in a multicentre military trial.

“We hope our discovery guides a precision medicine approach to managing depression and mild TBI, and perhaps even intervene in neuro-vulnerable trauma survivors before the onset of chronic symptoms,” said Rajendra Morey, MD, a professor of psychiatry at Duke University School of Medicine, and co-author on the study.

Source: Brigham and Women’s Hospital

Texting While Walking Increases the Risk of Slipping and Falling

Photo by Azat Satlykov on Unsplash

People are increasingly glued to their smartphones, texting even as they walk, which has inspired a wide range of studies: some have shown that they can multitask and navigate around obstacles while other have shown that they are more likely to walk into traffic. But how likely are they to avoid a fall if they slip? University of New South Wales (UNSW) researchers investigated this by simulating an environment with random slipping threats, and reported in the journal Heliyon that texting increases the risk of falling in response to walkway hazards.

“On any day it seems as many as 80% of people, both younger and older, may be head down and texting. I wondered: is this safe?” says senior author Matthew A. Brodie, a neuroscientist and engineer at the UNSW Graduate School of Biomedical Engineering. “This has made me want to investigate the dangers of texting while walking. I wanted to know if these dangers are real or imagined and to measure the risk in a repeatable way.”

The team recruited 50 UNSW undergraduate students from his “Mechanics of the Human Body” course for this experiment. Brodie and co-author Yoshiro Okubo invented a tiled hazard walkway at Neuroscience Research Australia’s gait laboratory, which halfway through had a tile that could be adjusted to slide out of place and cause a person stepping on it to slip. Students wore a safety harness and sensors that collected their motion data. They then were asked to go along the walkway either without texting or while typing “The quick brown fox jumps over the lazy dog.”

To better simulate the uncertainty of real life, students were only told that they may or may not slip. This allowed the researchers to study how texting pedestrians might anticipate and try to prevent a potential slip, such as by leaning forward.

“What surprised me is how differently people responded to the threat of slipping,” says Brodie. “Some slowed down and took a more cautious approach. Others sped up in anticipation of slipping. Such different approaches reinforce how no two people are the same, and to better prevent accidents from texting while walking, multiple strategies may be needed.”

Despite motion data showing that texting participants tried to be more cautious in response to a threat, this did not counteract their risk of falling. When participants went from leaning forwards (such as over a phone) to slipping backwards, their motion sensors showed an increase in the range of their ‘trunk angle’. Researchers used this number to measure whether the texting condition was making students more likely to fall, and they found that the average trunk angle range during a fall significantly increased if a student was texting.

Walking also caused the texters’ accuracy to decrease. The highest texting accuracy occurred when participants were seated, but accuracy decreased even as walking participants were cautioned about a potential slip that did not occur. The lowest accuracy, however, occurred in conditions where participants did slip.

The researchers note that young people may be more likely to take risks even if they are aware that texting and walking could increase their likelihood of falling. For that reason, the authors suggest that educational initiatives such as signs might be less effective in reaching this population. In addition to education, the researchers also suggest that phones could implement locking technology similar to what is used when users are driving. The technology could detect walking activity and activate a screen lock to prevent texting during that time. In future research, the team plans on looking into the effectiveness of this intervention.

Source: Science Daily

Specialised Omega-3 Lipid Could be a New Treatment for Acute Kidney Injury

Photo by Robina Weermeijer on Unsplash

Researchers from Singapore have identified a potential dietary supplement of omega-3 that may improve recovery following acute kidney injury (AKI). The finding, published in the Journal of Lipid Research, may offer a new way to treat this serious condition, which currently has few therapies.

The study was part of a long-running research programme at Duke-NUS Medical School investigating how cells take up a specialised omega-3 lipid called LPC-DHA.

AKI affects some 13.3 million people globally each year, with a mortality rate of 20 to 50% depending on the economic status of the country and stage of the disease. One of the main causes of AKI is ischaemic reperfusion injury, which occurs when the kidney’s blood supply is restored after a period of restricted blood flow and poor oxygen delivery due to illness, injury or surgical intervention. In particular, it damages a crucial part of the kidney called the S3 proximal tubules that regulate the levels of absorption of water and soluble substances, including salts.

“AKI is a serious health problem with limited treatment options,” said Dr Randy Loke, first author of the study. “We sought to understand how these tubules repair themselves and found that the activity of the protein Mfsd2a, which transports LPC-DHA into cells, is a key factor influencing the rate of recovery of kidney function after ischaemic reperfusion injury.”

In their study, the researchers discovered that preclinical models with reduced levels of Mfsd2a showed delayed recovery, increased damage and inflammation after kidney injury. However, when these models were treated with LPC-DHA, their kidney function improved and the damage was reduced. LPC-DHA also restored the structure of the S3 proximal tubules, helping them function properly again.

“While more research is needed, the potential of LPC-DHA as a dietary supplement is exciting for future recipients who have suffered from AKI,” said senior study author Professor David Silver. “As our results suggest that LPC-DHA could become a safe and effective treatment that offers lifelong protection, its potential can help protect the kidneys and aid in recovery for these individuals.”

In the next phase, the research team plans to continue investigating the beneficial functions of LPC in the kidney and are aiming to initiate clinical testing of LPC supplements to determine their effectiveness in improving renal function and recovery following AKI in patients.

They also plan to continue their investigations of the protein Mfsd2a to learn more about its role in LPC transport and its involvement in diseases affecting other tissues and organs. Previous research by Prof Silver’s group, with collaborators from other institutions, have already highlighted the significance of the protein’s LPC-transporting activities in diseases of other organs, including the liver, lungs and brain.

Source: Duke–NUS Medical School

Burn Scars Worsen High School Educational Outcomes

Photo by Andrew Neel on Unsplash

A new study published in the BMJ’s Archives of Disease in Childhood has found that young people who were hospitalised due to burns were less likely to finish high school than their peers.

Led by Associate Professor Rebecca Mitchell from the Australian Institute of Health Innovation (AIHI) at Macquarie University, the study compared the academic performance and high school completion rates of about 2000 young people to matched peers who had not been hospitalised for an injury.

The study found that the young people who had been burned were four times as likely to not finish Year 10, and more than twice as likely to not finish Year 11 or Year 12.

This research is the latest in a series of studies looking at the effects of hospitalisation for injuries and illnesses including broken bones, asthma, diabetes, epilepsy and mental health on young people’s educational outcomes.

The research team used linked birth, health and education records in New South Wales from 2005 to 2018 to analyse national literacy and numeracy test results and high school completion.

To create a peer comparison group, each hospitalised young person was age and gender matched to a random person in their postcode area who had not been hospitalised for an injury.

In the case of the burns patients, the most common cause of injury was contact with hot drinks, food, fats or cooking oils, followed by other hot fluids including hot or boiling water.

Almost all of the children in the burns cohort had more than 10% of the surface of their bodies affected, with torsos the most commonly injured area, followed by hands or wrists.

Associate Professor Mitchell says in addition to an increased risk of not finishing high school, girls who had burn injuries also had a higher risk of not achieving the national minimum standards in reading.

“Reasons why young females hospitalised with a burn have worse academic performance for reading could include reduced learning opportunities, school absenteeism, or psychosocial anxieties due to lower self-esteem and stigmatisation,” she says.

“This research shows that we need to monitor academic progression in young people after they sustain a burn to identify if they require any learning support.”

Paediatric burns specialist and co-author Professor Andrew Holland says that while most burns occur early in childhood, the effects can extend far beyond the initial period of acute care and recovery.

“In some cases, burns patients experience ongoing pain and poor sleep quality, which can disrupt a young person’s ability to engage and learn,” he says.

“In addition to this, scarring can have an influence on their motivation or ability to attend school.”

Source: Macquarie University

Antihypertensive Drug Prazosin could Relieve Posttraumatic Headaches

Photo by Usman Yousaf on Unsplash

Researchers have shown that the antihypertensive drug prazosin can prevent posttraumatic headaches, such as those caused by a concussion suffered by members of the military. Their findings were published in Headache: The Journal of Head and Face Pain.

Senior study author Dr Murray Raskind explained that few treatment options exist for this type of headache: “Persistent posttraumatic headaches are the most common long-term consequence of mild traumatic brain injuries (concussions) in Veterans and active-duty service members, causing substantial distress and disability at home and work. Although these headaches usually resemble migraine headaches symptomatically, they often fail to respond to the prevention treatments useful for migraines.”

The FDA approved prazosin to treat hypertension in 1976. It has been widely used off-label to treat conditions such as PTSD-associated nightmares and enlarged prostate. An earlier study by members of the research group suggested that prazosin could reduce the frequency and severity of headaches caused by traumatic brain injury (TBI).

To test this effect, researchers led by VA Puget Sound Health Care System conducted a pilot study with 48 Veterans and service members with headaches caused by mild TBI, also known as a concussion. Participants took gradually increasing doses of prazosin for five weeks before receiving the maximum dose for 12 weeks. The study showed that the drug was well-tolerated, and researchers reported that morning drowsiness was the only adverse effect.

Before the trial began, study participants had an average of 18 headache days each month. By the end of the 12-week period, those taking prazosin only had headaches for an average of six days a month. Participants receiving a placebo reported some reduction in headaches, but still had headaches about 12 days a month. Significantly more participants in the prazosin group had at least 50% fewer headaches during the 12 weeks of taking a full dose of medication.

Participants taking prazosin also saw significant decreases in how much headaches impacted their quality of life. By the end of the trial, those taking prazosin reported that headaches had “some impact” on their daily ability to function, while participants given a placebo continued to report “severe impact” of headaches.

Larger clinical trials are needed to confirm the extent of these promising results, according to the researchers, but these initial findings offer a potential relief for a common ailment faced by many Veterans.

“This study is the only clinical trial of an oral medication to demonstrate efficacy for posttraumatic headache. Because prazosin is widely used across VA and the Department of Defense to treat PTSD trauma nightmares and sleep disruption, many VA and DOD prescribers are familiar with prescribing this generically available, inexpensive medication,” said Raskind. “Prazosin now offers an evidence-based approach to alleviate the suffering of Veterans and service members who have struggled for years with frequent posttraumatic headaches.”

Source: Veterans Affair Research Communications

Shining a New Light on Tranexamic Acid for Trauma Care

A new study from Australia, New Zealand and Germany published in the New England Journal of Medicine raises important questions about the success or otherwise of using tranexamic acid in trauma. 

Tranexamic acid is commonly used to limit bleeding during surgery. However, its usefulness in emergency settings as a pre-emptive strike in life-threatening bleeding has been controversial, and recent studies have provided contradictory results about whether or not it saves lives or causes dangerous blood clotting. 

The Pre-hospital Antifibrinolytics for Traumatic Coagulopathy and Haemorrhage (PATCH-Trauma) Study was designed to solve this dilemma. Led by Monash University and the Australian and New Zealand Intensive Care Society Clinical Trials Group, it is one of the largest clinical trials ever conducted where treatment was given at the roadside, in an ambulance or in a helicopter prior to reaching hospital. 

It involved 1310 severely injured patients treated by 15 ambulance services and 21 trauma centres in Australia, New Zealand and Germany, taking eight years to complete. 

In addition to all the usual care, patients were randomly assigned to receive pre-hospital tranexamic acid or an inactive placebo. The results showed that for every 100 patients allocated to receive tranexamic acid, there were approximately four extra survivors at six months, but all were severely-disabled and highly-dependent on carers. 

The lead investigator, Professor Russell Gruen, now Dean of the College of Health and Medicine at the Australian National University, described this as a landmark study in trauma care. “It shows it’s not enough to find out only whether treatments save lives or not – quality of life and the long-term outcomes of care also matter,” Professor Gruen said.

Monash University Professor Stephen Bernard, Medical Advisor to Ambulance Victoria and lead for the Australian arm of the study, praised the ambulance services involved. “The PATCH-Trauma Study is further proof that ambulance professionals can conduct rigorous clinical trials in very sick patients and in extremely challenging circumstances,” he said. 

As to whether tranexamic acid should be used for trauma patients, Professor Gruen is circumspect. “Because the drug needs to be given before severely injured patients can make an informed decision, further work is needed to see if we can identify patients who are more likely to survive with a favourable functional outcome if they are given tranexamic acid,” he said. “However, the PATCH-Trauma Study gives us confidence that critical care is possible well before patients get to hospital.” 

Source: EurekAlert!

Sports Concussions Increase the Risk of Being Re-injured

Photo by John Torcasio on Unsplash

Concussions are commonplace in contact sports at junior and senior levels. Now, the investigators of a study published in the Journal of Science and Medicine in Sport are suggesting extended recovery times may be needed for youth athletes suffering from head trauma. The new research shows a concussion can increase future injury risk by 50%.

The world-first study from the University of South Australia tracked and evaluated the long-term impact of concussion and subsequent injury risk of 1455 sub-elite junior Australian rules football players.

This builds on previous UniSA research that found an approximate 1.5-fold increased risk of injury of sub-elite Australian rules football players returning from an injury, compared to those with no injury.

Tracking injuries over a seven-season period, researchers found that football players who suffered a concussion were also about 1.5 times more likely to be reinjured in the future when compared to players who had never been injured. This increased risk was the same as players returning from upper and lower limb injuries.

The finding comes ahead of the Australian Senate’s report into concussion injuries, and follows the AFL’s announcement for a $25 million study into the long-term effects of concussions and head knocks.

In the AFL, concussions are one of the most common injuries, with an average of six concussions every 1000 hours played, which involve around 70 to 80 male players every year.

In junior elite football as well as AFL and AFLW, the guidelines for concussion say that the earliest a player can return to play post-concussion is 12 days after the injury, after following the graded progression through a return-to-play program.

Lead researcher, UniSA’s Dr Hunter Bennett, says the significant and elevated risk of injury after a concussion may suggest a longer recovery time is required for some players to better recover before returning to play.

“The current recommendation of 12 days post-concussion may not be sufficient to allow full recovery in elite under-18 footballers,” Dr Bennett says.

It may also indicate that the physical qualities impacted by concussion should be assessed more thoroughly before an athlete is cleared to return to the sport.

“Concussion is a common injury in Australian rules football that can lead to impairments in balance, coordination, reaction time, and decision making – and these impairments can increase the risk of other injuries if an athlete returns to play before being fully recovered.”

A recent consensus statement on concussion in sport also indicates that children and teenagers may take up to four-weeks to recover from a sport related concussion.

“Concussions are a unique injury that occur without muscle tissue damage, instead impacting aspects of motor control,” Dr Bennett says.

“Recurrent injuries can significantly impact team success, player health, and career longevity.

“In elite sports, there is the potential for young athletes to overplay their readiness to return to sport after an injury, as they worry that missing games can exclude them from senior drafting or competition.

“When we know that athletes have a greater risk of another injury post a concussion, it suggests we need unique and careful rehabilitation strategies to monitor when an athlete is fully recovered and ready to return to play.”

Researchers say that future research should seek to identify optimal rehabilitation and injury prevention strategies for athletes who suffer from concussions.

Source: University of South Australia

Experts Revise Consensus Statement on Management of Concussion in Sport

Source: CC0

Latest Consensus Statement on Concussion in Sport includes:

  • New and updated age appropriate tools to aid identification and management of condition
  • New versions of return to active sport and education strategies
  • Stronger evidence for benefits of light intensity exercise within first 48 hours to aid recovery
  • New targeted approach to rehabilitation
  • Call for interdisciplinary working group to guide research into potential long term effects

A group of more than 100 expert researchers and clinicians from around the world, co-chaired by Professor Jon Patricios of Wits Sport and Health (WiSH), University of the Witwatersrand (Wits University), has distilled and synthesised new scientific evidence and updated existing recommendations with the aim of optimising the care of athletes at all levels of participation who have, or who are at risk of, concussion.

Based on the outcomes from the International Conference on Concussion in Sport, held in Amsterdam in October 2022, and published in the British Journal of Sports Medicine (BJSM), the Statement is informed by 10 systematic reviews and methodology outlining the new consensus process. The entire process more than 4 years to complete. 

In a bid to be more transparent and inclusive than in previous years, the process adopted anonymous voting, alternative viewpoints, open declarations of potential conflicts of interest, and included the views of athletes, a focus on para-athletes, and ethical perspectives.  

The Statement includes a series of new (SCOAT6, Child SCOAT6) and updated (CRT6, SCAT6, Child SCAT6) age-appropriate tools for clinicians and sports organisations to help them better identify and manage sports related concussion in the short and longer term.

It features new evidence-based strategies for returning to active sport and education after concussion; early exercise and treatment recommendations; approaches to prevention; targeted rehabilitation; and a call for a working group to be set up to guide further research on the potential long term effects of concussion on health. 

Among the key recommendations:

Prevention

  • Policy or rule changes to minimise collisions, such as disallowing body checking in ice hockey – a defensive move in which the player tries to separate the puck from his/her opponent 
  • Neuromuscular training – aerobic, balance, strength, agility exercises +/-neck-specific components – in warm ups 
  • Mouthguard use in ice hockey (all ages)
  • Implementing laws and protocols, such as mandatory removal from play after actual or suspected concussion; healthcare professional clearance to return to play; and education of coaches, parents, and athletes on the signs and symptoms of concussion

Early interventions

  • Strict rest isn’t recommended. There’s now stronger evidence that light intensity physical activity, such as routine activities of daily living, and aerobic exercise, such as walking and stationary cycling, can aid recovery, as can limiting screen time during the first 48 hours.

Rehabilitation

  • For those experiencing dizziness, neck pain and/or headaches for more than 10 days, the Statement recommends cervico-vestibular rehabilitation – physiotherapy exercises to reduce symptoms and improve function.
  • Rehabilitation should be targeted to the needs of the individual.

Persisting symptoms 

  • Multidisciplinary team assessment to identify the types, pattern, and severity of symptoms and any other contributory factors is advised for those with symptoms lasting more than 4 weeks. 

Recovery

  • Advanced neuroimaging, biomarkers (chemical signals from nerves or blood vessels), genetic tests, and other emerging technologies to assess recovery are useful for research into the diagnosis, outlook, and recovery from sports related concussion. But as yet, they are some way off from being used in clinical practice, says the Statement.

Return to education and sport

  • Academic support may be needed for some athletes in the form of a return to learn strategy: this can include modified school attendance, limiting screen time, avoiding any contact sports or game play, extra time to complete assignments/homework or tests.
  • Light intensity activity in the early phases of the return to sport strategy is now recommended, with full sports participation usually occurring within 1 month of injury.
  • But it’s best to manage athletes on an individual basis, accounting for specific factors that may affect their recovery, such as a history of migraine, anxiety, and social factors.

Potential long term effects

  • The Statement notes the “increasing societal concern about possible problems with later in life brain health in former athletes, such as mental health problems, cognitive impairment and neurological diseases.”
  • Studies tracking the mental health of people over time (cohort studies) have found that former amateur and professional athletes don’t seem to be at heightened risk of depression or suicidality later in life.
  • Similarly, no heightened risk of neurological disease has been reported in former amateur athletes in these types of study. But some studies of former professional athletes have reported an association between playing professional American football and professional soccer and neurological disease in later life.
  • But the studies to date on the links between early sports participation and later life dementia and neurological disease are limited because they haven’t been able to adjust for a range of potentially highly influential factors, says the Statement.
  • It recommends setting up an interdisciplinary working group to guide appropriate research into the potential long term effects of concussion on health.

Evidence gaps still to be filled

  • There’s limited evidence on the management of sports related concussion in 5-12 year olds and in para sport athletes, who are known to be at heightened risk of sports related concussion.
  • And little research on concussion exists for certain regions of the world, diverse cultural contexts, sex and genders.

Commenting on the Statement, Consensus Statement co-chair, Dr Kathryn Schneider of the University of Calgary, Canada, says: “This Statement sets out a range of new evidence-based recommendations, including those for concussion prevention as well as new versions of the concussion assessment tools and return to sport and school/learning strategies”. 

“We encourage clinicians and sports organisations around the globe to adapt these recommendations to their own geographic and cultural environments to optimise the care of athletes who have sustained, or who are at risk of, concussion,” she adds.

“The differentiating aspects of this latest Concussion Consensus are the rigorous methodological process we adopted, the new generation of tools available to clinicians, and the emphasis on the positive impact of exercise and targeted rehabilitation as effective interventions,” explains Consensus Statement co-chair, Professor Jon Patricios of Wits University, Johannesburg, South Africa.

“These have the potential to positively change the management of sport-related concussion.”

Source: Wits University

Could A Perfume Ingredient Stop Coagulopathy in Massive Bleeding?

The chances of surviving massive blood loss from a traumatic injury such as a gunshot wound are around 50%. To survive, a patient urgently needs a large infusion of blood and coagulation at the wound to stop the bleeding.

The problem is one of these solutions prevents the other. Introducing a large amount of blood to those suffering a massive haemorrhage impairs the blood’s ability to clot, a condition known as coagulopathy.  

Now, Tulane University researchers have uncovered the cause of coagulopathy in trauma victims receiving a blood infusion. They also found that a synthetic compound called dimethyl malonate – often used in perfume manufacturing – has the potential to stop coagulopathy during a massive hemorrhage. The researchers’ findings are part of a new study published in Science Advances.

“Coagulopathy of trauma is a major contributor to mortality, but no treatment has shown to be fully effective,” said Olan Jackson-Weaver, PhD, assistant professor of surgery at Tulane University School of Medicine and corresponding author on the study. “We were getting 60 percent mortality with our animal model. With dimethyl malonate, we got zero percent mortality, and the coagulopathy completely went away.”

Recent studies have shown that coagulopathy during massive haemorrhage treatment is most likely caused by the shedding of the glycocalyx, a barrier of sugars that surrounds and protects cells. In blood vessels, the glycocalyx lines the vessel walls and prevents blood from clotting. However, this is the first study to identify the cellular events that cause the glycocalyx to be ripped apart.

The study found that a large infusion of blood creates a spike in cellular metabolism which causes a change in structure to the cell membrane. This exposes the glycocalyx, allowing it to be chewed up by enzymes and mixed into the bloodstream, where it prevents clotting.

“People have been trying to figure out ways to move the needle a little bit on the death rate from massive haemorrhage for the last 20 or so years and nothing has really worked,” Jackson-Weaver said. “We’re hopeful that understanding these cellular-level events can help to develop something that actually does make a big difference.”

In animal models, dimethyl malonate was effective at inhibiting excessive cellular metabolism, which prevented the glycocalyx from shedding and causing coagulopathy.

But Jackson-Weaver said more research needs to be done to determine if dimethyl malonate is safe for humans or if an equivalent drug that targets cellular metabolism can be developed.

“We’ve established this pathway that causes coagulopathy, so if we can target it therapeutically with a pre-hospital drug or injection, we can hopefully save some lives,” Jackson-Weaver said.

Source: Tulane University