Category: Immune System

Muscle Loss from Wasting Turns into Fuel to Fight Infection

Photo by I Yunmai on Unsplash

One common symptom of infection is wasting, the loss of fat and muscle. Salk scientists wanted to know whether wasting was beneficial in fighting infections. Researchers discovered the wasting response to T. brucei infection in mice occurs in two phases, each regulated by different immune cells. While fat loss did not benefit the fight against infection, muscle loss did – a surprising clue that some wasting may help manage illness.

The findings, published in Cell Reports, can inform the development of more effective therapeutics that spare people from wasting and increase our understanding of how wasting influences survival and morbidity across infections, cancers, chronic illnesses, and more.

“We often make assumptions that conditions like wasting are bad, since they often coincide with higher mortality rates,” says senior author Ayres. “But if instead we ask, what is the purpose of wasting? We can find surprising and insightful answers that can help us understand the human response to infection and how we can optimise that response.”

Defending the body from an invader requires a lot of energy. Prior studies suggested this immune-related energy consumption had the unfortunate consequence of wasting. But Ayres and team were curious to know whether wasting could be beneficial and not just a side effect.

T cells are slow to respond to infections, but when they do respond, they adapt to fight the particular infection. Ayres was interested to know whether it was these T cells causing wasting. If T cells are responsible for the condition, that would indicate wasting is not simply an unproductive side effect of energy-hungry immune cells.

The cells of interest are called CD4+ and CD8+ T cells. CD4+ T cells lead the fight against infection and can promote the activity of CD8+ T cells, which can kill invaders and cancerous cells. The two T cell types often work together, so the researchers hypothesised their role in wasting may be a cooperative effort, too.

To work out the relationship between CD4+ and CD8+ T cells and wasting, the researchers turned to the parasite T. brucei. Because T. brucei lives in fat and can block the adaptive immune response (which includes T cells) it was a perfect model infection for their questions about fat wasting and how T cells mediate that process.

The team investigated 1) the role of CD4+ and CD8+ T cells during T. brucei infection and 2) how removing CD4+ and CD8+ T cells changed the longevity, mortality rates, parasite symptoms, and amount of parasite present in infected mice.

The researchers found that CD4+ T cells acted first and initiated the process of fat wasting. Afterward, but completely independently of the fat wasting, CD8+ T cells initiated the process of muscle wasting. The CD4+ T cell-induced fat wasting had no impact on the ability for the mice to fight T. brucei or to survive infection. The CD8+ T cell-induced muscle wasting, however, contrary to the traditional assumptions about wasting, helped the mice fight T. brucei and survive the infection.

“Our discoveries were so surprising that there were times I wondered if we did something wrong,” says first author Samuel Redford. “We had striking results that mice with fully functioning immune systems and mice without CD4+ T cells lived the same amount of time – meaning, those CD4+ T cells and the fat wasting they caused were completely disposable in fighting the parasite. And beyond that, we found that normally cooperative T cell subtypes were working totally independently of one another.”

The findings illustrate the important role of immune cells in both fat and muscle wasting and the necessity to understand the function of such responses to inform therapeutic interventions.

“We can learn so much about our immune systems by looking at the environments and infections we have co-evolved with,” says Ayres. “While T. brucei is an interesting and important case, what is exciting is extrapolating our findings to understand, treat, and overcome any disease that involves immune-mediated wasting – parasites, tumours, chronic illnesses, and so much more.”

In the future, the team will examine the T cell mechanism in other mammals and eventually humans. They also want to explore in more detail why muscle wasting is occurring and why CD4+ and CD8+ T cells play these distinct roles.

Source: Salk Institute

Contrary to Prior Belief, T Cells Even Protect the Cornea

Photo by Stormseeker on Unsplash

Researchers have discovered that the immune cells guarding the healthy human cornea from pathogens and inflammation are T cells, and dendritic cells, as previously thought. The discovery, published in PNAS, redefines current understanding of the immune cell landscape in the cornea of a healthy human eye. It builds on the team’s previous research in Cell Reports that showed that T cells protect the eye against virus infection in mice.

The collaborative research team jointly developed a new imaging technique as part of their investigation.

Research leader Professor Scott Mueller, from the Department of Microbiology and Immunology at the Doherty Institute explained that our knowledge of the various immune cell types in the human cornea is important for establishing the eye’s protective mechanisms against pathogens and disease.

“By combining our newly developed imaging technique with other advanced analytical approaches, we were able to discover that a significant number of cells at the surface of the healthy cornea are actually T cells,” said Professor Mueller.

“Until now, these cells were mistakenly classified as dendritic cells based on static imaging. This completely changes the current dogma in the field that only dendritic cells are present in the healthy cornea.”

The study’s first author, University of Melbourne’s Associate Professor Laura Downie said that being able to dynamically capture the cells’ normal behaviour, and in response to inflammation, provides unique understanding into the immune response in the eye.

“Using our non-invasive imaging approach, which we term Functional In Vivo Confocal Microscopy (Fun-IVCM), we have been able to see that these T cells move around quickly and interact with other cells and nerves in the outermost layer of the cornea. We also captured different cell dynamics in response to contact lens wear and in allergic eye disease, and quantified how these behaviours are modulated by drug treatments,” said Associate Professor Downie.

“These findings reshape our understanding of the distinct immune cell subsets in the human cornea, and how they respond to different stimuli. Using Fun-IVCM, we can achieve rapid, real-time insight into the cellular immune responses in living humans, in this accessible peripheral sensory tissue.”

Senior author Dr Holly Chinnery, also of the University of Melbourne, added that the new research will have major implications for the medical and immunology fields, including for patients and practitioners.

“Because this new technique involves non-invasive, time-lapse imaging of the human cornea, Fun-IVCM could be used in clinics directly to assess immune responses and ocular health. It could even be used for general immune system health,” said Dr Chinnery.

“Changes in T cells and behaviour could be used as a clinical biomarker of disease and assist with treatments.”

Source: The Peter Doherty Institute for Infection and Immunity

Elevated Body Temperature Helps Gut Microbiota to Fight Viruses

Researchers from The University of Tokyo have helped unravel the connection between high body temperature and increased viral resistance. Older adults are at a higher risk of contracting viral infections, research shows. Quite notably, they also have lower mean body temperatures – yet the effects of increased body temperature on fighting viral infections remain largely unexplored. The researchers found that higher temperature increased bile acids along with the infection-fighting capability of the gut microbiota. Their study was published in Nature Communications.

To conduct their experiments, the team used mice which were heat- or cold-exposed at 4°C, 22°C, or 36°C a week before influenza virus infection. After the viral infection was induced, the cold-exposed mice mostly died due to severe hypothermia, whereas the heat-exposed mice were highly resistant to the infection even at increasing doses of the virus. “High-heat-exposed mice raise their basal body temperature above 38°C, allowing them to produce more bile acids in a gut microbiota-dependent manner,” remarks Dr Takeshi Ichinohe from the Division of Viral Infection, The University of Tokyo, Japan.

The authors speculated that signalling of deoxycholic acid (DCA) from the gut microbiota and its plasma membrane-bound receptor “Takeda G-protein-coupled receptor 5” (TGR5) increased host resistance to influenza virus infection by suppressing virus replication and neutrophil-dependent tissue damage.

While working on these experiments, the team noticed that mice infected with the influenza virus showed decreased body temperatures nearly four days after the onset of the infection, and they snuggled together to stay warm!

The team noticed similar results after switching the influenza virus with SARS-CoV-2 and the study results were also validated using a Syrian hamster model. Their experiments revealed that body temperature over 38°C could increase host resistance to influenza virus and SARS-CoV-2 infections. Moreover, they also found that such increase in body temperature catalyzed key gut microbial reactions, which in turn, led to the production of secondary bile acids. These acids can modulate immune responses and safeguard the host against viral infections.

Dr. Ichinohe explains, “The DCA and its nuclear farnesoid X receptor (FXR) agonist protect Syrian hamsters from lethal SARS-CoV-2 infection. Moreover, certain bile acids are reduced in the plasma of COVID-19 patients who develop moderate I/II disease compared with the minor severity of illness group.”

The team then performed extensive analysis to gain insight into the precise mechanisms underlying the gut-metabolite-mediated host resistance to viral infections in heat-exposed rodents. Besides, they also established the role of secondary bile acids and bile acid receptors in mitigating viral infections.

“Our finding that reduction of certain bile acids in the plasma of patients with moderate I/II COVID-19 may provide insight into the variability in clinical disease manifestation in humans and enable approaches for mitigating COVID-19 outcomes,” concludes Dr. Ichinohe.

To briefly summarize, the published study reveals that the high-body-temperature-dependent activation of gut microbiota boosts the serum and intestinal levels of bile acids. This suppresses virus replication and inflammatory responses that follow influenza and SARS-CoV-2 infections.

A heartfelt appreciation to the Japanese researchers for placing their trust in their intuition and gut instincts!

Source: University of Tokyo

Adaptive Immune Memory Resides in the Shape of DNA

Scanning electron micrograph of a human T lymphocyte (also called a T cell) from the immune system of a healthy donor. Credit: NIAID

One of the adaptive immune system’s most intriguing abilities of the is its memory: upon first contact with antigens, it takes around two weeks to respond, but responses afterwards are much faster, as if the cells ‘remembered’ the antigen. But how is this memory attained? In a recent publication in Science Immunology, a team of researchers examined epigenetic and the structure of DNA for possible clues.

In their research paper, first author Anne Onrust-van Schoonhoven and colleagues compared the response of immune cells that had never been in contact with an antigen (called naïve cells) with cells previously exposed to antigen (memory cells) and sort of knew it. They focused on the differences in the epigenetic control of the cellular machinery and the nuclear architecture of the cells, two mechanisms that could explain the quick activation pattern of memory cells.

While all the cells in an individual have the same genetic information, different cell types access to different parts of the DNA. The term ‘epigenetics’ encompasses the mechanisms that dynamically control this access. The results revealed a particular epigenetic signature in memory T helper (TH)2 cells, resulting in the rapid activation of a crucial set of genes compared to naïve cells. These genes were much more accessible to the cellular machinery, in particular to a family of transcription factors called AP-1. Like athletes before a race, these genes had essentially been ‘warming up’ ever since the cell’s first contact with the antigen.

However, this epigenetic signature was just the tip of the iceberg. It is known that the position of the DNA in the nucleus is not random and reflects the cell’s activation state. The researchers found that, indeed, the 3D distribution of DNA in the nucleus is different between naïve and memory immune cells. Key genes for the early immune response are grouped together and under the influence of the same regulatory regions, called enhancers. Keeping with the racing metaphor, the genes are not only warmed-up, but also gathered together at the starting line.

Although most of the research has focused on healthy cells, the scientific team wondered whether any of the mechanisms found could, when altered, explain actual diseases in which the immune system plays an important role. To address this question, they analysed immune cells from chronic asthma patients and found that the circuits identified as key for an early and strong immune response were overactivated.

The epigenetic control of the immune system is a blossoming field and discoveries like the ones by Dr Stik and colleagues are setting the stage for the next generation of epigenetic drugs and treatments, targeting autoimmune diseases and cancer.

Source: Josep Carreras Leukaemia Research Institute

Mast Cells Instruct the Brain to Avoid Allergens

Photo by Kanashi ZD on Unsplash

Mast cells functions are still something of a mystery, but scientists have now shown in mice that mast cells act as a sensor that signals the animals to avoid antigens, including harmful allergens, and thereby protect themselves from health-threatening inflammatory reactions. The findings were published in the journal Nature.

Mast cells are found primarily in tissues that separate the outside and inside worlds of the body, such as the epithelia of the gastrointestinal tract and lungs. Within the tissues, mast cells often reside near nerve endings. Mast cells are well known to persons suffering from allergies because they secrete messenger substances such as histamine, which cause annoying to health-threatening allergic symptoms. These symptoms occur when mast cells are activated by IgE class antibodies during repeated antigen contact.

“Why mast cells and IgE exist at all has not yet been conclusively explained,” says immunologist Hans-Reimer Rodewald at the at the German Cancer Research Center (DKFZ). The researcher his team have now been able to show for the first time in mice, in a combination of behavioural experiments and immunological studies, that mast cells act like a sensor that helps to avoid contact with allergens

Mast cells and IgE needed for antigen avoidance

The DKFZ researchers immunised mice with the allergen ovalbumin, a protein component of chicken egg white. They then gave the animals the free choice of preferring either normal or egg white-containing drinking water. Immunised animals avoided the egg white-enriched water, while their non-immunised conspecifics clearly preferred it. A large proportion of the immunised animals avoided the egg white-containing water already one day after immunisation, some mice even after the first sip.

However, when the scientists performed this behavioural test with mice that genetically lack mast cells, both immunised and non-immunised animals preferred the egg white-containing water. Mice genetically unable to produce IgE also showed no avoidance behaviour. Thus, both mast cells and IgE are responsible for antigen avoidance.

When the immunised mice had no choice because the egg white solution was instilled in them, the animals developed inflammation in the stomach and small intestine. “The avoidance behaviour mediated by mast cells apparently protects the animals from harmful immune reactions,” explains Thomas Plum, one of the first authors.

How do mast cells “talk” to the brain?

An important open question for the scientists was now: How can mast cells, as a component of the immune system, influence behaviour? In what ways do immune cells “talk” to the brain? The scientists examined a variety of biologically active substances released by mast cells. These include leukotrienes, pro-inflammatory messengers known to activate sensory nerves. If the researchers blocked leukotriene synthesis, the immunized mice no longer showed the same consequence in avoiding egg white. Leukotrienes therefore appear to be at least partly involved in avoidance behaviour. Further immunological and neurobiological experiments are needed in the future to identify the nerve connections through which the mast cell signal is reported to the brain.

“In the intestine, lungs or skin, immune reactions against non-infectious antigens can occur as a result of so-called barrier disorders, permeability of the tissues from the outside to the inside. In the case of allergy, we call such antigens allergens. Whether these substances are dangerous or not, it is important for the organism to avoid their further intake in order to prevent inflammatory diseases. This is an evolutionary advantage and finally a conclusive explanation of the physiological role of mast cells and IgE,” Rodewald summarizes the results.

Whether mast cells also contribute to the avoidance of harmful antigens in humans must be addressed in further studies.

Source: German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ)

Long COVID not Caused by COVID Immune Inflammatory Response, New Study Finds

Photo by Usman Yousaf on Unsplash

Research led by the University of Bristol has found that long COVID is not caused by an immune inflammatory reaction to COVID. Emerging data shows that immune activation may persist for months after contracting COVID. In this new study, published in eLife, researchers wanted to find out whether persistent immune activation and ongoing inflammation response could be the underlying cause of long COVID.  

To investigate this, the Bristol team collected and analysed immune responses in blood samples from 63 patients hospitalised with mild, moderate or severe COVID at the start of the pandemic and before vaccines were available. The team then tested patients’ immune responses at three months and again at eight and 12 months post hospital admission. Of these patients, 79% (82%, 75%, and 86% of mild, moderate, and severe patients, respectively) reported at least one ongoing symptom with breathlessness and excessive fatigue being the most common.

Dr Laura Rivino, the study’s lead author, explained: “Long Covid occurs in one out of ten COVID cases, but we still don’t understand what causes it.  Several theories proposed include whether it might be triggered by an inflammatory immune response towards the virus that is still persisting in our body, sending our immune system into overdrive or the reactivation of latent viruses such as human cytomegalovirus (CMV) and Epstein Barr virus (EBV).”

The team found patients’ immune responses at three months with severe symptoms displayed significant dysfunction in their T-cell profiles indicating that inflammation may persist for months even after they have recovered from the virus. Reassuringly, results showed that even in severe cases inflammation in these patients resolved in time. At 12 months, both the immune profiles and inflammatory levels of patients with severe disease were similar to those of mild and moderate patients.

Patients with severe COVID were found to display a higher number of long Covid symptoms compared to mild and moderate patients. However, further analysis by the team revealed no direct association between long COVID symptoms and immune inflammatory responses, for the markers that were measured, in any of the patients after adjusting for age, sex and disease severity.

Importantly, there was no rapid increase in immune cells targeting SARS-CoV-2 at three months, but T-cells targeting the persistent and dormant Cytomegalovirus (CMV) – a common virus that is usually harmless but can stay in your body for life once infected with it – did show an increase at low levels. This indicates that the prolonged T-cell activation observed at three months in severe patients may not be driven by SARS-CoV-2 but instead may be “bystander driven” ie driven by cytokines. 

Dr Rivino added: “Our findings suggest that prolonged immune activation and Long COVID may correlate independently with severe COVID. Larger studies should be conducted looking at both a larger number of patients, including if possible vaccinated and non-vaccinated COVID patients, and measuring a larger range of markers and cytokines. 

“Understanding whether inflammation and immune activation associate with Long COVID would allow us to understand whether targeting these factors may be a useful therapy for this debilitating condition.”

Source: University of Bristol

Researchers Discover an Anti-tumour Regulator on B Cells

Melanoma Cells. Credit: National Cancer Institute

B cells are thought to play a critical role in innate and adaptive immunity, but their exact role in anti-tumour immunity remains unknown. Looking at B cells with a technique called single-cell profiling, which looks at all the genes in the cell, researchers found a protein that – when deleted – reduced tumour growth. The researchers write in Nature that this regulator could be a target for new cancer treatments.

The team, consisting of immunologists at Brigham and Women’s Hospital and dermatologists from Massachusetts General Hospital, identified a subset of B cells that expands specifically in the draining lymph node over time in mice with melanoma tumours.

They found a cell surface receptor called TIM-1 expressed on these B cells during melanoma growth. They also characterised multiple accompanying cell surface proteins that were involved in the B cell’s immune function. Interestingly, they found that deleting a molecule TIM-1, but not any of the other accompanying proteins, dramatically decreased tumour growth. The researchers concluded that TIM-1 controls B cell activation and immune response that combats cancer, including activating another type of the killer tumour-specific T cells for inhibiting tumour growth.

“The collaboration across institutions was extremely fruitful as we combined our immunology expertise at the Brigham with work at David Fisher’s MGH laboratory where seminal discoveries in skin malignancies have been made,” said lead author Lloyd Bod, PhD, of the Department of Neurology at the Brigham, who conducted this work while completing his postdoctoral fellowship at the Brigham. “The collaboration allowed us to test and demonstrate the therapeutic potential of targeting TIM-1 in melanoma models.”

Source: Mass General Brigham

Neanderthal Genetic Influences on Human Immune System and Metabolism

Diagram comparing the nose shape of a Neanderthal with that of a modern human by Dr Macarena Fuentes-Guajardo.

Neanderthal genes comprise some 1 to 4% of the genome of present-day humans whose ancestors migrated out of Africa, and new research has shown that their lingering presence shapes the immune systems and metabolism of people of non-African ancestry. Some of these genetics changes are detrimental, but are slowly being replaced by human versions.

A multi-institution research team including Cornell University has developed a new suite of computational genetic tools to address the genetic effects of interbreeding between humans of non-African ancestry and Neanderthals that took place some 50 000 years ago. (The study applies only to descendants of those who migrated from Africa before Neanderthals died out, and in particular, those of European ancestry.)

In a study published in eLife, the researchers reported that some Neanderthal genes are responsible for certain traits in modern humans, including several with a significant influence on the immune system. Overall, however, the study shows that modern human genes are winning out over successive generations.

“Interestingly, we found that several of the identified genes involved in modern human immune, metabolic and developmental systems might have influenced human evolution after the ancestors’ migration out of Africa,” said study co-lead author April (Xinzhu) Wei, an assistant professor of computational biology in the College of Arts and Sciences. “We have made our custom software available for free download and use by anyone interested in further research.”

Using a vast dataset from the UK Biobank consisting of genetic and trait information of nearly 300 000 British people of non-African ancestry, the researchers analysed more than 235 000 genetic variants likely to have originated from Neanderthals. They found that 4303 of those differences in DNA are playing a substantial role in modern humans and influencing 47 distinct genetic traits, such as how fast someone can burn calories or a person’s natural immune resistance to certain diseases.

Unlike previous studies that could not fully exclude genes from modern human variants, the new study leveraged more precise statistical methods to focus on the variants attributable to Neanderthal genes.

While the study used a dataset of almost exclusively white individuals living in the United Kingdom, the new computational methods developed by the team could offer a path forward in gleaning evolutionary insights from other large databases to delve deeper into archaic humans’ genetic influences on modern humans.

“For scientists studying human evolution interested in understanding how interbreeding with archaic humans tens of thousands of years ago still shapes the biology of many present-day humans, this study can fill in some of those blanks,” said senior investigator Sriram Sankararaman, an associate professor at the University of California, Los Angeles. “More broadly, our findings can also provide new insights for evolutionary biologists looking at how the echoes of these types of events may have both beneficial and detrimental consequences.”

Source: Cornell University

Scientists Strengthen Evidence Linking Autoimmunity and Schizophrenia

Image by Pikisuperstar On Freepix

Links have been reported between schizophrenia and autoimmunity. In a study published in Brain Behavior and Immunity, Japanese researchers identified autoantibodies that target a ‘synaptic adhesion protein’, neurexin 1α, in a subset of patients with schizophrenia. When injected into mice, the autoantibodies caused many schizophrenia-related changes.

What is a synaptic protein, and why might it be linked to schizophrenia? Synaptic adhesion proteins are specialised proteins that bind to create physical connections between brain cells. These connections, called synapses, allow the cells to communicate by passing molecules back and forth. Both synapses and autoimmunity are known to be associated with schizophrenia, so the research team from Tokyo Medical and Dental University (TMDU) decided to investigate autoantibodies that target synaptic proteins in patients with schizophrenia.

“In around 2% of our patient population, we identified autoantibodies against the synaptic protein neurexin 1α, which is expressed by one cell in the synapse and binds to proteins known as neuroligins on the other cell in the synapse,” says lead author of the study Hiroki Shiwaku. “Once we had identified these autoantibodies, we wanted to see if they were able to cause schizophrenia-related changes.”

To do this, the researchers isolated autoantibodies from some of the patients with schizophrenia and injected them into the cerebrospinal fluid of mice, so that the autoantibodies would travel into the brain. In these mice, the autoantibodies blocked neurexin 1α and neuroligin binding and altered some related synaptic properties. The administration of these autoantibodies also resulted in fewer synapses in the brains of mice and schizophrenia-related behaviours, such as reduced social behaviour toward unfamiliar mice and reduced cognitive function.

“Together, our results strongly suggest that autoantibodies against neurexin 1α can cause schizophrenia-related changes, at least in mice,” explains Hiroki Shiwaku. “These autoantibodies may therefore represent a therapeutic target for a subset of patients with schizophrenia.”

Schizophrenia has a wide variety of both symptoms and treatment responses, and many patients have symptoms that are resistant to currently available treatment options. Therefore, the identification of possible disease-causing autoantibodies is important for improving symptom control in patients with schizophrenia. It is hoped that the results of this investigation will allow patients with autoantibodies that target neurexin 1α – all of whom were resistant to antipsychotic treatment in the present study — to better control their symptoms in the future.

Source: Tokyo Medical and Dental University

Autoimmune Disorders Now Affect Roughly One in Ten Individuals

Photo by Jacek Dylag on Unsplash

A population-based study of 22 million people in the UK estimates that around one in ten individuals in the UK now live with an autoimmune disorder. The findings, published in The Lancet, also highlight important socioeconomic, seasonal and regional differences for several autoimmune disorders, providing new clues as to what factors may be involved in these conditions.

There are more than 80 known autoimmune diseases, including conditions like rheumatoid arthritis, type 1 diabetes and multiple sclerosis, some of which have been increasing in the last few decades.

This has raised the question whether overall incidence of autoimmune disorders is on the rise and what factors are involved, such as environmental factors or behavioural changes in society. The exact causes of autoimmune diseases remain largely unknown, including how much can be attributed to a genetic predisposition to disease and how much is down to exposure to environmental factors.

The study used anonymised electronic health data from 22 million individuals in the UK to investigate 19 of the most common autoimmune diseases. The authors examined whether incidence of autoimmune diseases is rising over time, who is most affected by these conditions and how different autoimmune diseases may co-exist with each other.

They found that the 19 autoimmune diseases studied affect around 10% of the population. This is higher than previous estimates, which ranged from 3–9% and often relied on smaller sample sizes and included fewer autoimmune conditions. The analysis also highlighted a higher incidence in women (13%) than men (7%).

The research discovered evidence of socioeconomic, seasonal and regional disparities for several autoimmune disorders, suggesting that these conditions are unlikely to be caused by genetic differences alone. This observation may point to the involvement of potentially modifiable risk factors such as smoking, obesity or stress. It was also found that in some cases a person with one autoimmune disease is more likely to develop a second, compared to someone without an autoimmune disease.

Dr Nathalie Conrad at the University of Oxford said: “We observed that some autoimmune diseases tended to co-occur with one another more commonly than would be expected by chance or increased surveillance alone. This could mean that some autoimmune diseases share common risk factors, such as genetic predispositions or environmental triggers. This was particularly visible among rheumatic diseases and among endocrine diseases. But this phenomenon was not generalised across all autoimmune diseases. Multiple sclerosis, for example, stood out as having low rates of co-occurrence with other autoimmune diseases, suggesting a distinct pathophysiology.”

These findings reveal novel patterns that will inform the design of further research into the possible common causes of different autoimmune diseases.

Professor Geraldine Cambridge at UCL Medicine said: “Our study highlights the considerable burden that autoimmune diseases place upon individuals and the wider population. Disentangling the commonalities and differences within this large and varied set of conditions is a complex task. There is a crucial need, therefore, to increase research efforts aimed at understanding the underlying causes of these conditions, which will support the development of targeted interventions to reduce the contribution of environmental and social risk factors.”

Source: University College London