Category: Exercise

Physical Exercise Concomitant with Chemotherapy Reduces Nerve Damage

Photo by Mikhail Nilov

Many cancer medications, from chemotherapy to modern immunotherapies, attack the nerves as well as the tumour cells. Some therapies, such as oxaliplatin or vinca alkaloids, leave 70 to 90% of patients complaining of pain, balance issues, or feelings of numbness, burning or tingling. These symptoms can be very debilitating. They can disappear following cancer treatment, but in around 50% they become chronic. Specialists call it chemotherapy-induced peripheral neuropathy, or CIPN for short.

A research team led by sports scientist Dr Fiona Streckmann from the University of Basel and the German Sport University Cologne has now shown that specific exercise, concomitant to cancer therapy, can prevent nerve damage in many cases. The researchers have reported their findings in JAMA Internal Medicine.

Exercise alongside chemo

The study involved 158 cancer patients, both male and female, who were receiving treatment either with oxaliplatin or vinca-alkaloids. The researchers divided the patients at random into three groups. The first was a control group, whose members received standard care. The other two groups completed exercise sessions twice a week for the duration of their chemotherapy, with each session lasting between 15 and 30 minutes. One of these groups carried out exercises that focused primarily on balancing on an increasingly unstable surface. The other group trained on a vibration plate.

Regular examinations over the next five years showed that in the control group around twice as many participants developed CIPN as in either of the exercise groups. In other words, the exercises undertaken alongside chemotherapy were able to reduce the incidence of nerve damage by 50 to 70%. In addition, they increased the patients’ subjectively perceived quality of life, made it less necessary to reduce their dose of cancer medications, and reduced mortality in the five years following chemotherapy.

The participants receiving vinca-alkaloids and performing sensorimotor training, had the largest benefit. 

Ineffective medications

A lot of money has been invested over the years in reducing the incidence of CIPN, explains Streckmann. “This side effect has a direct influence on clinical treatment: for example, patients may not be able to receive the planned number of chemotherapy cycles that they actually need, the dosage of neurotoxic agents in the chemotherapy may have to be reduced, or their treatment may have to be terminated.”

Despite the investments made, there is no effective pharmacological treatment to date: various studies have shown that medications can neither prevent nor reverse this nerve damage. However, according to the latest estimates, USD 17 000 are spent per patient every year in the USA on treating nerve damage associated with chemotherapy. Streckmann’s assumption is that “doctors prescribe medications despite everything, because patients’ level of suffering is so high.”

Study ongoing in children’s hospitals

In contrast, the sports scientist emphasises, the positive effect of exercise has been substantiated, and this treatment is very cheap in comparison. At the moment she and her team are working on guidelines for hospitals, so that they can integrate the exercises into clinical practice as supportive therapy. In addition, since 2023 a study has been ongoing in six children’s hospitals in Germany and Switzerland (Project PrepAIR), which is intended prevent sensory and motor dysfunctions in children receiving neurotoxic chemotherapy.

“The potential of physical activity is hugely underestimated,” says Fiona Streckmann. She very much hopes that the results of the newly published study will lead to more sports therapists being employed in hospitals, in order to better exploit this potential.

Source: University of Basel

Exercise Scientists Come up with a Simple Fix for Shin Splints

Photo by Andrea Piacquadio on Pexels

Shin splints are a common complaint among runners, especially if they use treadmills. A randomised controlled trial found that four weeks of gait training outdoors, in addition to home exercises often prescribed for shin splints, led to improved running biomechanics even when the runners were using a treadmill. These improvements included decreasing the time the runners’ feet were in contact with the ground or treadmill, a recently identified contributor to shin splints. 

Based on the trial results, the researchers, including UVA Health sports medicine expert David J. Hryvniak, DO, are recommending that clinicians begin including outdoor gait training as part of rehabilitation programs for patients struggling with chronic shin splints.

“This is an important finding for clinicians, as this gives us a tool to use to help these runners,” said Hryvniak, a running medicine specialist who is part of UVA Health’s Runner’s Clinic. “These gait-training cues can be an easy thing to add into a rehab program to help patients improve running mechanics that can underlie many common running injuries.”

Soothing shin splints

Affecting approximately 40% of all runners, shin splints typically begin as tenderness in the lower leg that goes away after exercising. But for regular runners, this pain can worsen and become persistent. In severe cases, shin splints can even lead to stress fractures.

Prior research has found that short courses of outdoor gait training can significantly reduce shin-splint pain for outdoor runners. But experts had been uncertain if these benefits would transfer to the flat, regular surface of treadmill running. That prompted an interdisciplinary team of researchers to launch a randomised trial to find out if outdoor gait training would benefit treadmill users.

The researchers enrolled 17 treadmill runners between ages 18 and 45 who ran at least three times a week and who had been suffering lower leg pain during or after running for at least a month. The volunteers were randomly divided into two groups: One group received four weeks of outdoor gait training and performed commonly prescribed home strengthening exercises, while the other group only performed the home exercises.

During the gait training, participants were provided with “vibrotactile feedback” – meaning they felt a little vibration – when special sensors in their shoes detected their feet were in contact with the ground for too long. This helped them improve their stride and gait to reduce this potential contributor to shin splints.

At the end of the study period, both groups saw strength improvements in their legs. But the gait trainers also had improved running technique, or what the researchers call “favorable adjustments in running gait mechanics.” And, sure enough, these gait improvements were seen during both outdoor runs and treadmill runs. 

That suggests outdoor gait training could be an important new tool to help treadmill users work up a sweat pain-free, the researchers say.

“Shin splints are a very common running injury, especially with those who are new to the sport,” Hryvniak said. “These gait cues are something that have been shown to be an effective tool that patients can use literally ‘on the run.’” 

Source: University of Virginia Health

Walking is Highly Effective for Stopping Low Back Pain from Returning

Photo by Henry Xu on Unsplash

New research from Macquarie University’s Spinal Pain Research Group shows that walking has the potential to change the way low back pain is managed, making effective interventions accessible to more people than ever before. The results of the trial, which combined walking with education, are published in The Lancet.

About 800 million people worldwide have low back pain, which is a leading cause of disability and reduced quality of life. Recurrences of low back pain are very common, with seven in 10 people who recover from an episode going on to have a recurrence within a year.

Professor of Physiotherapy Mark Hancock and his research team have been investigating ways to shift the emphasis from treatment to prevention to improve the management of back pain, an approach that empowers individuals to manage their own health and reduces the cost to society and the healthcare system.

Far from the bed rest recommended for back pain in the past, current best practice includes the combination of exercise and education, both to treat current pain and to prevent future episodes.

While beneficial, some forms of exercise are not accessible or affordable to many people due to their high cost, complexity and need for supervision.

A simpler, more accessible method

The world-first WalkBack trial examined whether a programme of walking combined with education could be effective in preventing recurrences of low back pain.

The trial followed 701 adults who had recently recovered from an episode of low back pain, randomly allocating participants to either an individualised walking program facilitated by a physiotherapist and six education sessions across six months, or to a no-intervention control group.

The participants’ progress was then followed for between one and three years to collect information about any new recurrences of low back pain they experienced.

The researchers’ primary aim was to compare the two groups for the number of days before participants experienced a recurrence of back pain that impacted daily activities or required care from a healthcare provider.

They also evaluated the cost effectiveness of the intervention, including costs related to work absenteeism and healthcare services.

Longer pain-free periods

The paper’s senior author, Professor Hancock, says what they discovered could have a profound impact on how low back pain is managed.

“The intervention group had fewer occurrences of activity-limiting pain compared to the control group, and a longer average period before they had a recurrence, with a median of 208 days compared to 112 days,” Professor Hancock says. “The risk of having a recurrence that required seeking care was nearly halved in those in the intervention group.

“Walking is a low-cost, widely accessible and simple exercise that almost anyone can engage in, regardless of age, geographic location or socio-economic status.

“We don’t know exactly why walking is so good for preventing back pain, but it is likely to include the combination of gentle oscillatory movements, loading and strengthening the spinal structures and muscles, relaxation and stress relief, and the release of ‘feel-good’ endorphins.

“And of course, we also know that walking comes with many other health benefits, including cardiovascular health, improved bone density, maintenance of a healthy weight and improved mental health.”

Professor Hancock said the amount of walking each person completed was individualised based on a range of factors including their age, physical capacity, preferences and available time. Participants were given a rough guide to build up to 30 minutes, five times a week over a six-month period.

After three months, Professor Hancock said most of the people who took part were walking three to five days a week for an average of 130 minutes.

“You don’t need to be walking five or 10 kilometres every day to get these benefits,” Professor Hancock says.

A cost-effective option

The paper’s lead author, Postdoctoral Fellow Dr Natasha Pocovi, says in addition to providing participants with longer pain-free periods, they found the program was also cost effective.

“It not only improved people’s quality of life, but it reduced their need both to seek healthcare support and the amount of time taken off work by approximately half,” Dr Pocovi says.

“The exercise-based interventions to prevent back pain that have been explored previously are typically group-based and need close clinical supervision and expensive equipment, so they are much less accessible to the majority of patients.

“Our study has shown that this effective and accessible means of exercise has the potential to be successfully implemented on a much larger scale than other forms of exercise.”

To build on these findings, the team now hopes to explore how they can integrate the preventive approach into the routine care of patients who experience recurrent low back pain.

Source: MacQuarie University

New Insights into How Exercise Slows Age-related Cognitive Decline

Photo by Ketut Subiyanto on Unsplash

New research published in Aging Cell provides insights into how exercise may help to prevent or slow cognitive decline during aging.

For the study, investigators assessed the expression of genes in individual cells in the brains of mice. The team found that exercise has a significant impact on gene expression in microglia, the immune cells of the central nervous system that support brain function. Specifically, the group found that exercise reverts the gene expression patterns of aged microglia to patterns seen in young microglia.

Treatments that depleted microglia revealed that these cells are required for the stimulatory effects of exercise on the formation of new neurons in the brain’s hippocampus, a region involved in memory, learning, and emotion.

The scientists also found that allowing mice access to a running wheel prevented and/or reduced the presence of T cells in the hippocampus during aging. These immune cells are not typically found in the brain during youth, but they increase with age.

“We were both surprised and excited about the extent to which physical activity rejuvenates and transforms the composition of immune cells within the brain, in particular the way in which it was able to reverse the negative impacts of aging,” said co–corresponding author Jana Vukovic, PhD, of The University of Queensland, in Australia. “It highlights the importance of normalising and facilitating access to tailored exercise programs. Our findings should help different industries to design interventions for elderly individuals who are looking to maintain or improve both their physical and mental capabilities.”

Source: Wiley

With Gain, No Pain: Exercise Protects against Chronic Pain

Photo by Jonathan Borba on Unsplash

In 2023, researchers in Norway found that among more than 10 000 adults, those who were physically active had a higher pain tolerance than those who were sedentary; and the higher the activity level, the higher the pain tolerance.

After this finding, the researchers wanted to understand how physical activity could affect the chances of experiencing chronic pain several years later. And they wondered if this was related to how physical activity affects our ability to tolerate pain.

This prompted a new study from the researchers at UiT The Arctic University of Norway, the University Hospital of North Norway (UNN), and the Norwegian Institute of Public Health, which was published in the journal PAIN.

“We found that people who were more active in their free time had a lower chance of having various types of chronic pain 7-8 years later. For example, being just a little more active, such as going from light to moderate activity, was associated with a 5% lower risk of reporting some form of chronic pain later,” says doctoral fellow Anders Årnes at UiT and UNN and study author.

He adds that for severe chronic pain in several places in the body, higher activity was associated with a 16% reduced risk.

Measured cold pain tolerance

The researchers found that the ability to tolerate pain played a role in this apparent protective effect. That explains why being active could lower the risk of having severe chronic pain, whether or not it was widespread throughout the body.

“This suggests that physical activity increases our ability to tolerate pain and may be one of the ways in which activity helps to reduce the risk of severe chronic pain,” says Årnes.

The researchers included almost 7000 people in their study, recruited from the large Tromsø survey, which has collected data on people’s health and lifestyle over decades.

After obtaining information about the participants’ exercise habits during their free time, the researchers examined how well the same people handled cold pain in a laboratory. Later, they checked whether the participants experienced pain that lasted for three months or more, including pain that was located in several parts of the body or pain that was experienced as more severe.

Among the participants, 60% reported some form of chronic pain, but only 5% had severe pain in multiple parts of the body. Few people experienced more serious pain conditions.

Pain and exercise

When it comes to exercising if you already have chronic pain, the researcher says:

“Physical activity is not dangerous in the first place, but people with chronic pain can benefit greatly from having an exercise program adapted to help them balance their effort so that it is not too much or too little. Healthcare professionals experienced in treating chronic pain conditions can often help with this. A rule of thumb is that there should be no worsening that persists over an extended period of time, but that certain reactions in the time after training can be expected.”

Source: UiT The Arctic University of Norway

Time-restricted Eating and High-intensity Exercise Might Work Together to Improve Health

Photo by Malvestida on Unsplash

Combining time-restricted eating with high-intensity functional training may improve body composition and cardiometabolic parameters more than either alone, according to a study published May 1, 2024 in the open-access journal PLOS ONE by Ranya Ameur and Rami Maaloul from the University of Sfax, Tunisia, and colleagues.

Changes in diet and exercise are well-known ways to lose weight and improve cardiometabolic health. However, finding the right combination of lifestyle changes to produce sustainable results can be challenging. Prior studies indicate that time-restricted eating (which limits when, but not what, individuals eat) and high-intensity functional training (which combines intense aerobic and resistance exercise) may be beneficial and easier for individuals to commit to long term.

In a new study, researchers investigated the impact of time-restricted eating and high-intensity functional training on body composition and markers of cardiometabolic health such as cholesterol, blood glucose, and lipid levels. 64 women with obesity were assigned to one of three groups: time-restricted eating (diet only), high-intensity functional training (exercise only), or time-restricted eating plus high-intensity functional training (diet + exercise). Participants following the time-restricted eating regimen ate only between 8:00 am and 4:00 pm. Those in the functional training groups worked out three days per week with an instructor.

After 12 weeks, all three groups had significant weight loss and decreases in waist and hip circumference. Likewise, all groups showed favorable changes in lipid and glucose levels.

Some differences were seen between groups. For example, fat-free mass (a combination of lean mass and skeletal muscle mass) and blood pressure improved in the diet + exercise and exercise groups but did not change in the diet-only group.

Participants in the diet + exercise group generally experienced more profound changes in body composition and cardiometabolic parameters than either diet or exercise alone.

The researchers noted that this is a relatively small study, and it is difficult to tease out the contributions of specific exercise routines or of time-restricted eating and calorie reduction since both groups reduced their calorie intake. However, they note that combining time-restricted eating with high-intensity functional training might show promise in improving body composition and cardiometabolic health.

The authors add: “Combining time-restricted eating with High Intensity Functional Training is a promising strategy to improve body composition and cardiometabolic health.”

Provided by PLOS

Even a Little Light Exercise can Combat Depression, Study Shows

Photo by Ketut Subiyanto on Unsplash

New research has found a significant association between participating in low to moderate intensity exercise and reduced rates of depression. Researchers carried out an umbrella review of studies carried out across the world to examine the potential of physical activity as a mental health intervention.

The analysis, published in the journal Neuroscience and Biobehavioural Reviews, found that physical activity reduced the risk of depression by 23% and anxiety by 26%. A particularly strong association was found between low and moderate physical activity, which included activities such as gardening, golf and walking, and reduced risk of depression. But this was not strongly observed for high intensity exercise.

Physical activity was also significantly associated with reduced risk of severe mental health conditions, including a reduction in psychosis/schizophrenia by 27%. The results were consistent in both men and women, and across different age groups and across the world.

Lead author Lee Smith, Professor of Public Health at Anglia Ruskin University (ARU), said: “Preventing mental health complications effectively has emerged as a major challenge, and an area of paramount importance in the realm of public health. These conditions can be complex and necessitate a multi-pronged approach to treatment, which may encompass pharmacological interventions, psychotherapy, and lifestyle changes.

“These effects of physical activity intensity on depression highlight the need for precise exercise guidelines. Moderate exercise can improve mental health through biochemical reactions, whereas high-intensity exercise may worsen stress-related responses in some individuals.

“Acknowledging differences in people’s response to exercise is vital for effective mental health strategies, suggesting any activity recommendations should be tailored for the individual.

“The fact that even low to moderate levels of physical activity can be beneficial for mental health is particularly important, given that these levels of activity may be more achievable for people who can make smaller lifestyle changes without feeling they need to commit to a high-intensity exercise programme.”

Source: Anglia Ruskin University

Metformin’s Weight Loss Tied to “Anti-hunger” Molecule

A new study finds that the modest weight loss from taking metformin is attributable to an appetite-suppressing molecule that is abundant after exercise

Photo by I Yunmai on Unsplash

An “anti-hunger” molecule produced after vigorous exercise is responsible for the moderate weight loss caused by the diabetes medication metformin, according to a new study in mice and humans. The anti-hunger molecule, lac-phe, was discovered by Stanford Medicine researchers in 2022.

The finding, made jointly by researchers at Stanford Medicine and at Harvard Medical School and published in Nature Metabolism, further cements the critical role the molecule, called lac-phe, plays in metabolism, exercise and appetite. It may pave the way to a new class of weight loss drugs.

“Until now, the way metformin, which is prescribed to control blood sugar levels, also brings about weight loss has been unclear,” said Jonathan Long, PhD, an assistant professor of pathology. “Now we know that it is acting through the same pathway as vigorous exercise to reduce hunger. Understanding how these pathways are controlled may lead to viable strategies to lower body mass and improve health in millions of people.”

Many people with diabetes who are prescribed metformin lose around 2% to 3% of their body weight within the first year of starting the drug. Although this amount of weight loss is modest when compared with the 15% or more often seen by people taking semaglutide, the discoveries that led to those drugs also grew from observations of relatively minor, but reproducible, weight loss in people taking first-generation versions of the medications.

Post-workout appetite loss

When Long and colleagues at Baylor University discovered lac-phe in 2022, they were on the hunt for small molecules responsible for curtailing hunger after vigorous exercise. What they found was a mishmash of lactate and an amino acid called phenylalanine. They dubbed the hybrid molecule lac-phe and went on to show that it’s not only more abundant after exercise but it also causes people (as well as mice and even racehorses) to feel less hungry immediately after a hard workout.

“There is an intimate connection between lac-phe production and lactate generation,” Long said. “Once we understood this relationship, we started to think about other aspects of lactate metabolism.”

Metformin was an obvious candidate because as it stimulates the breakdown of glucose (thus reducing blood sugar levels) it can trigger the generation of lactate.

The researchers found that obese laboratory mice given metformin had increased levels of lac-phe in their blood. They ate less than their peers and lost about 2 grams of body weight during the nine-day experiment.

Long and his colleagues also analysed stored blood plasma samples from people with Type 2 diabetes before and 12 weeks after they had begun taking metformin to control their blood sugar. They saw significant increases in the levels of lac-phe in people after metformin compared with their levels before treatment. Finally, 79 participants in a large, multi-ethnic study of atherosclerosis who were also taking metformin had significantly higher levels of lac-phe circulating in their blood than those who were not taking the drug.

“It was nice to confirm our hunch experimentally,” Long said. “The magnitude of effect of metformin on lac-phe production in mice was as great as or greater than what we previously observed with exercise. If you give a mouse metformin at levels comparable to what we prescribe for humans, their lac-phe levels go through the roof and stay high for many hours.”

Further research revealed that lac-phe is produced by intestinal epithelial cells in the animals; blocking the ability of mice to make lac-phe erased the appetite suppression and weight loss previously observed.

Finally, a statistical analysis of the people in the atherosclerosis study who lost weight during the several-year study and follow-up period found a meaningful association between metformin use, lac-phe production and weight loss.

“The fact that metformin and sprint exercise affect your body weight through the same pathway is both weird and interesting,” Long said. “And the involvement of the intestinal epithelial cells suggests a layer of gut-to-brain communication that deserves further exploration. Are there other signals involved?”

Long noted that, while semaglutide drugs are injected into the bloodstream, metformin is an oral drug that is already prescribed to millions of people. “These findings suggest there may be a way to optimize oral medications to affect these hunger and energy balance pathways to control body weight, cholesterol and blood pressure. I think what we’re seeing now is just the beginning of new types of weight loss drugs.”

Source: Stanford Medicine

Yoga Provides Unique Cognitive Benefits to Older Women at Risk of Alzheimer’s disease

Photo by Mikhail Nilov

A new UCLA Health study found Kundalini yoga provided several benefits to cognition and memory for older women at risk of developing Alzheimer’s disease including restoring neural pathways, preventing brain matter decline and reversing aging and inflammation-associated biomarkers – improvements not seen in a group who received standard memory training exercises.

The findings, published in the journal Translational Psychiatry, are the latest in a series of studies led by UCLA Health researchers over the past 15 years into the comparative effects of yoga and traditional memory enhancement training on slowing cognitive decline and addressing other risk factors of dementia.

Led by UCLA Health psychiatrist Dr. Helen Lavretsky of the Jane and Terry Semel Institute for Neuroscience and Human Behavior, this latest study sought to determine whether Kundalini yoga could be used early on to prevent cognitive decline and trajectories of Alzheimer’s disease among postmenopausal women.

Women have about twice the risk of developing Alzheimer’s disease compared to men due to several factors including longer life expectancy, changes in oestrogen levels during menopause and genetics.

In the new study, a group of more than 60 women ages 50 and older who had self-reported memory issues and cerebrovascular risk factors were recruited from a UCLA cardiology clinic. The women were divided evenly into two groups. The first group participated in weekly Kundalini yoga sessions for 12 weeks while the other one group underwent weekly memory enhancement training during the same time period. Participants were also provided daily homework assignments.

Kundalini yoga is a method that focuses on meditation and breath work more so than physical poses. Memory enhancement training developed by the UCLA Longevity centre includes a variety of exercises, such as using stories to remember items on a list or organising items on a grocery list, to help preserve or improve long-term memory of patients.

Researchers assessed the women’s cognition, subjective memory, depression and anxiety after the first 12 weeks and again 12 weeks later to determine how stable any improvements were. Blood samples were also taken to test for gene expression of aging markers and for molecules associated with inflammation, which are contributing factors to Alzheimer’s disease. A handful of patients were also assessed with MRIs to study changes in brain matter.

Researchers found the Kundalini yoga group participants saw several improvements not experienced by the memory enhancement training group. These included significant improvement in subjective memory complaints, prevention in brain matter declines, increased connectivity in the hippocampus which manages stress-related memories, and improvement in the peripheral cytokines and gene expression of anti-inflammatory and anti-aging molecules.

“That is what yoga is good for – to reduce stress, to improve brain health, subjective memory performance and reduce inflammation and improve neuroplasticity,” Lavretsky said.

Among the memory enhancement training group, the main improvements were found to be in the participants’ long-term memory.

Neither group saw changes in anxiety, depression, stress or resilience, though Lavretsky stated this is likely because the participants were relatively healthy and were not depressed.

While the long-term effects of Kundalini yoga on preventing or delaying Alzheimer’s disease require further study, Lavretsky said the study demonstrates that using yoga and memory training in tandem could provide more comprehensive benefits to the cognition of older women.

“Ideally, people should do both because they do train different parts of the brain and have different overall health effects,” Lavretsky said. “Yoga has this anti-inflammatory, stress-reducing, anti-aging neuroplastic brain effect which would be complementary to memory training.”

Source: University of California – Los Angeles Health Sciences

Women Get the Same Exercise Benefits as Men, but with Less Effort

Photo by Ketut Subiyanto on Unsplash

A new study from the Smidt Heart Institute at Cedars-Sinai shows there is a gender gap between women and men when it comes to exercise. The findings, published in the Journal of the American College of Cardiology (JACC), show that women can exercise less often than men, yet receive greater cardiovascular gains.

“Women have historically and statistically lagged behind men in engaging in meaningful exercise,” said Martha Gulati, MD, director of Preventive Cardiology in the Department of Cardiology in the Smidt Heart Institute at Cedars-Sinai, the Anita Dann Friedman Chair in Women’s Cardiovascular Medicine and Research and co-lead author of the study.

“The beauty of this study is learning that women can get more out of each minute of moderate to vigorous activity than men do. It’s an incentivising notion that we hope women will take to heart.”

Investigators analysed data from 412 413 US adults utilising the National Health Interview Survey database. Participants between the time frame of 1997 to 2019 – 55% of whom were female – provided survey data on leisure-time physical activity.

Investigators examined gender-specific outcomes in relation to frequency, duration, intensity and type of physical activity.

“For all adults engaging in any regular physical activity, compared to being inactive, mortality risk was expectedly lower,” said Susan Cheng, MD, MPH, the Erika J. Glazer Chair in Women’s Cardiovascular Health and Population Science, director of the Institute for Research on Healthy Aging in the Department of Cardiology in the Smidt Heart Institute, and senior author of the study.

“Intriguingly, though, mortality risk was reduced by 24% in women and 15% in men.”

The research team then studied moderate to vigorous aerobic physical activity, such as brisk walking or cycling, and found that men reached their maximal survival benefit from doing this level of exercise for about five hours per week, whereas women achieved the same degree of survival benefit from exercising just under about 2 ½ hours per week.

Similarly, when it came to muscle-strengthening activity, such as weightlifting or core body exercises, men reached their peak benefit from doing three sessions per week and women gained the same amount of benefit from about one session per week.

Cheng said that women had even greater gains if they engaged in more than 2 ½ hours per week of moderate to vigorous aerobic activity, or in two or more sessions per week of muscle-strengthening activities.

The investigators note their findings help to translate a longstanding recognition of sex-specific physiology seen in the exercise lab to a now-expanded view of sex differences in exercise-related clinical outcomes.

With all types of exercise and variables accounted for, Gulati says there’s power in recommendations based on the study’s findings.

“Men get a maximal survival benefit when performing 300 minutes of moderate to vigorous activity per week, whereas women get the same benefit from 140 minutes per week,” Gulati said.

“Nonetheless, women continue to get further benefit for up to 300 minutes a week.”

Christine M. Albert, MD, MPH, chair of the Department of Cardiology in the Smidt Heart Institute and the Lee and Harold Kapelovitz Distinguished Chair in Cardiology, says concrete, novel studies like this don’t happen often.

“I am hopeful that this pioneering research will motivate women who are not currently engaged in regular physical activity to understand that they are in a position to gain tremendous benefit for each increment of regular exercise they are able to invest in their longer-term health,” said Albert, professor of Cardiology.

Source: Cedars-Sinai Medical Center