A surprising discovery in hedgehogs showed that a variant of the MRSA superbug appeared in nature well before antibiotics use in humans and livestock, which has traditionally been blamed for its emergence.
Staphylococcus aureus first developed resistance to the antibiotic methicillin around 200 years ago, according to a large international study which has traced the genetic history of the bacteria.
The finding comes from research showing that up to 60% of hedgehogs in Denmark and Sweden carry a type of MRSA called mecC-MRSA. The new study also found high levels of MRSA in swabs taken from hedgehogs across their range in Europe and New Zealand. Their findings were published in the journal Nature.
The researchers believe that antibiotic resistance evolved in S. aureus as an adaptation to having to exist on hedgehog skin next to the fungus Trichophyton erinacei, which produces its own antibiotics. The discovery of this centuries-old antibiotic resistance predates antibiotic use in medical and agricultural settings.
“Using sequencing technology we have traced the genes that give mecC-MRSA its antibiotic resistance all the way back to their first appearance, and found they were around in the nineteenth century,” said Dr Ewan Harrison, a senior author of the study.
He added: “Our study suggests that it wasn’t the use of penicillin that drove the initial emergence of MRSA, it was a natural biological process. We think MRSA evolved in a battle for survival on the skin of hedgehogs, and subsequently spread to livestock and humans through direct contact.”
Antibiotic resistance in human pathogens was previously thought to be a modern phenomenon, driven by the clinical use of antibiotics. Antibiotic misuse is now accelerating the process, with antibiotic resistance rising dangerously worldwide.
Since nearly all antibiotics used today arose in nature, the researchers say it is likely that resistance to them already exists in nature too. Overuse of any antibiotic in humans or livestock will favour resistant strains of the bacteria, causing it to lose effectiveness over time.
“This study is a stark warning that when we use antibiotics, we have to use them with care. There’s a very big wildlife ‘reservoir’ where antibiotic-resistant bacteria can survive – and from there it’s a short step for them to be picked up by livestock, and then to infect humans,” said Professor Mark Holmes, a senior author of the report.
In 2011, mecC -MRSA was identified in human and dairy cow populations, which was assumed to have arisen due to the large number of antibiotics cows are routinely given.
MRSA was first identified in patients in 1960, and around 1 in 200 of all MRSA infections are caused by mecC-MRSA. Due to its resistance to antibiotics, MRSA is much harder to treat than other bacterial infections. The World Health Organization now considers MRSA one of the world’s greatest threats to human health.
Human infections are rare with mecC-MRSA however, even though it has been present in hedgehogs for more than 200 years.
Source: University of Cambridge