Day: March 27, 2025

How Antibiotics in Infancy may Increase Diabetes Risk

Gut Microbiome. Credit Darryl Leja National Human Genome Research Institute National Institutes Of Health

Exposure to antibiotics during a key developmental window in infancy can stunt the growth of insulin-producing cells in the pancreas and may boost risk of diabetes later in life, new research in mice suggests. The study, published this month in the journal Science, also pinpoints specific microorganisms that may help those critical cells proliferate in early life.

The findings are the latest to shine a light on the importance of the human infant microbiome—the constellation of bacteria and fungi living on and in us during our first few years. The research could lead to new approaches for addressing a host of metabolic diseases.

“We hope our study provides more awareness for how important the infant microbiome actually is for shaping development,” said first author Jennifer Hill, assistant professor in molecular, cellular and developmental biology at CU’s BioFrontiers Institute. “This work also provides important new evidence that microbe-based approaches could someday be used to not only prevent but also reverse diabetes.”

Something in the environment

More than 2 million U.S. adults live with Type 1 diabetes. The disease typically emerges in childhood, and genetics play a strong role. But scientists have found that, while identical twins share DNA that predisposes them to Type 1 diabetes, only one twin usually gets the disease.

“This tells you that there’s something about their environmental experiences that is changing their susceptibility,” said Hill.

For years, she has looked to microbes for answers.

Previous studies show that children who are breastfed or born vaginally, which can both promote a healthy infant microbiome, are less likely to develop Type 1 diabetes than others. Some research also shows that giving babies antibiotics early can inadvertently kill good bugs with bad and boost diabetes risk.

The lingering questions: What microbes are these infants missing out on?

“Our study identifies a critical window in early life when specific microbes are necessary to promote pancreatic cell development,” said Hill.

A key window of opportunity

She explained that human babies are born with a small amount of pancreatic “beta cells,” the only cells in the body that produce insulin. But some time in a baby’s first year, a once-in-a-lifetime surge in beta cell growth occurs.

“If, for whatever reason, we don’t undergo this event of expansion and proliferation, that can be a cause of diabetes,” Hill said.

She conducted the current study as a postdoctoral researcher at the University of Utah with senior author June Round, a professor of pathology.

They found that when they gave broad-spectrum antibiotics to mice during a specific window (the human equivalent of about 7 to 12 months of life), the mice developed fewer insulin producing cells, higher blood sugar levels, lower insulin levels and generally worse metabolic function in adulthood.

“This, to me, was shocking and a bit scary,” said Round. “It showed how important the microbiota is during this very short early period of development.”

Lessons in baby poop

In other experiments, the scientists gave specific microbes to mice, and found that several they increased their production of beta cells and boosted insulin levels in the blood. The most powerful was a fungus called Candida dubliniensis.

The team used faecal samples from The Environmental Determinants of Diabetes in the Young (TEDDY) study to make what Hill calls “poop slushies” and fed them to the mice.

When the researchers inoculated newborn mice with poop from healthy infants between 7 to 12 months in age, their beta cells began to grow. Poop from infants of other ages did not do the same. Notably, Candida dublineinsis was abundant in human babies only during this time period.

“This suggests that humans also have a narrow window of colonisation by these beta cell promoting microbes,” said Hill.

When male mice that were genetically predisposed to Type 1 diabetes were colonised with the fungus in infancy, they developed diabetes less than 15% of the time. Males that didn’t receive the fungus got diabetes 90% of the time.

Even more promising, when researchers gave the fungus to adult mice whose insulin-producing cells had been killed off, those cells regenerated.

Too early for treatments

Hill stresses that she is not “anti-antibiotics.” But she does imagine a day when doctors could give microbe-based drugs or supplements alongside antibiotics to replace the metabolism-supporting bugs they inadvertently kill.

Poop slushies (faecal microbiota transplants) have already been used experimentally to try to improve metabolic profiles of people with Type 2 diabetes, which can also damage pancreatic beta cells.

But such approaches can come with real risk, since many microbes that are beneficial in childhood can cause harm in adults. Instead, she hopes that scientists can someday harness the specific mechanisms the microbes use to develop novel treatments for healing a damaged pancreas—reversing diabetes.

She recently helped establish a state-of-the-art “germ-free” facility for studying the infant microbiome at CU Boulder. There, animals can be bred and raised entirely without microbes, and by re-introducing them one by one scientists can learn they work.

“Historically we have interpreted germs as something we want to avoid, but we probably have way more beneficial microbes than pathogens,” she said. “By harnessing their power, we can do a lot to benefit human health.”

Source: University of Colorado at Boulder

Social Skills not as Relevant for Autism Diagnosis than Thought

Photo by Peter Burdon on Unsplash

People with autism are typically diagnosed by clinical observation and assessment. To deconstruct the clinical decision process, which is often subjective and difficult to describe, researchers used a large language model (LLM) to synthesize the behaviours and observations that are most indicative of an autism diagnosis. Their results, publishing in the Cell Press journal Cell, show that repetitive behaviours, special interests, and perception-based behaviours are most associated with an autism diagnosis.

These findings have potential to improve diagnostic guidelines for autism by decreasing the focus on social factors – which the established guidelines in the DSM-5 focus on but the model did not classify among the most relevant in diagnosing autism.

“Our goal was not to suggest that we could replace clinicians with AI tools for diagnosis,” says senior author Danilo Bzdok of the Mila Québec Artificial Intelligence Institute and McGill University in Montreal. “Rather, we sought to quantitatively define exactly what aspects of observed behaviour or patient history a clinician uses to reach a final diagnostic determination. In doing so, we hope to empower clinicians to work with diagnostic instruments that are more in line with their empirical realities.”

The scientists leveraged a transformer language model, which was pre-trained on about 489 million unique sentences. They then fine-tuned the LLM to predict the diagnostic outcome from a collection of more than 4000 reports written by clinicians working with patients considered for autism diagnosis. The reports, which were often used by multiple clinicians, included accounts of observed behaviour and relevant patient history but did not include a suggested diagnostic outcome.

The team developed a bespoke LLM module that pinpointed specific sentences in the reports that were most relevant to a correct diagnosis prediction. They then extracted the numerical representation of these highly autism-relevant sentences and compared them directly with the established diagnostic criteria enumerated in the DSM-5.

“Modern LLMs, with their advanced natural language processing capabilities, are natively suited to this textual analysis,” Bzdok says. “The key challenge we faced was in designing sentence-level interpretability tools to pinpoint the exact sentences, expressed by the healthcare professional themselves, that were most essential to a correct diagnosis prediction by the LLM.”

The researchers were surprised by how clearly the LLM was able to distinguish between the most diagnostically relevant criteria. For example, their framework flagged that repetitive behaviours, special interests, and perception-based behaviour were the criteria most relevant to autism. While these criteria are used in clinical settings, current criteria focus more on deficits in social interplay and lack of communication skills.

The authors note that there are limitations to this study, including a lack of geographical diversity. Additionally, the researchers did not analyse their results based on demographic variables, with the goal of making the conclusions more broadly applicable.

The team expects their framework will be helpful to researchers and medical professionals working with a range of psychiatric, mental health, and neurodevelopmental disorders in which clinical judgement forms the bulk of the diagnostic decision-making process.

“We expect this paper to be highly relevant to the broader autism community,” Bzdok says. “We hope that our paper motivates conversations about grounding diagnostic standards in more empirically derived criteria. We also hope it will establish common threads that link seemingly diverse clinical presentations of autism together.”

Source: ScienceDaily

Why Does Obesity Takes Away the Pleasure of Eating?

Photo by Jonathan Borba

The pleasure we get from eating junk food — the dopamine rush from crunching down on salty, greasy chips and a luscious burger — is often blamed as the cause of overeating and rising obesity rates in our society. But a new study suggests that pleasure in eating, even eating junk food, is key for maintaining a healthy weight in a society that abounds with cheap, high-fat food.

Paradoxically, anecdotal evidence suggests that people with obesity may take less pleasure in eating than those of normal weight. Brain scans of obese individuals show reduced activity in pleasure-related brain regions when presented with food, a pattern also observed in animal studies.

Now, University of California, Berkeley, researchers have identified a possible underlying cause of this phenomenon — a decline in neurotensin, a brain peptide that interacts with the dopamine network — and a potential strategy to restore pleasure in eating in a way that helps reduce overall consumption.

The study, published in Nature, reveals an unsuspected brain mechanism that explains why a chronic high-fat diet can reduce the desire for high-fat, sugary foods, even when these foods remain easily accessible. The researchers propose that this lack of desire in obese individuals is due to a loss of pleasure in eating caused by long-term consumption of high-calorie foods. Losing this pleasure may actually contribute to the progression of obesity.

“A natural inclination toward junk food is not inherently bad — but losing it could further exacerbate obesity,” said Stephan Lammel, a UC Berkeley professor in the Department of Neuroscience and a member of the Helen Wills Neuroscience Institute.

The researchers found that this effect is driven by a reduction in neurotensin in a specific brain region that connects to the dopamine network. Importantly, they demonstrate that restoring neurotensin levels — either through dietary changes or genetic manipulations that enhance neurotensin production — can reinstate the pleasure in eating and promote weight loss.

“A high-fat diet changes the brain, leading to lower neurotensin levels, which in turn alters how we eat and respond to these foods,” Lammel said. “We found a way to restore the desire for high-calorie foods, which may actually help with weight management.”

While findings in mice don’t always translate directly to humans, this discovery could open new avenues for addressing obesity by restoring food-related pleasure and breaking unhealthy eating patterns.

“Imagine eating an amazing dessert at a great restaurant in Paris — you experience a burst of dopamine and happiness,” said Neta Gazit Shimoni, a UC Berkeley postdoctoral fellow. “We found that this same feeling occurs in mice on a normal diet, but is missing in those on a high-fat diet. They may keep eating out of habit or boredom, rather than genuine enjoyment.”

Gazit Shimoni and former UC Berkeley graduate student Amanda Tose are co-first authors, and Lammel is senior author of the study, which will be published March 26 in the journal Nature.

Solving a long-standing puzzle in obesity research

For decades, doctors and researchers have struggled to understand and treat obesity, as countless fad diets and eating regimens have failed to produce long-term results. The recent success of GLP-1 agonists like Ozempic, which curb appetite by increasing feelings of fullness, stands out among many failed approaches.

Lammel studies brain circuits, particularly the dopamine network, which plays a crucial role in reward and motivation. Dopamine is often associated with pleasure, reinforcing our desire to seek rewarding experiences, such as consuming high-calorie foods.

While raising mice on a high-fat diet, Gazit Shimoni noticed a striking paradox: While in their home cages, these mice strongly preferred high-fat chow, which contained 60% fat, over normal chow with only 4% fat, leading them to gain excessive weight. However, when they were taken out of their home cages and given free access to high-calorie treats such as butter, peanut butter, jelly or chocolate, they showed much less desire to indulge than normal-diet mice, which immediately ate everything they were offered.

“If you give a normal, regular-diet mouse the chance, they will immediately eat these foods,” Gazit Shimoni said. “We only see this paradoxical attenuation of feeding motivation happening in mice on a high-fat diet.”

She discovered that this effect had been reported in past studies, but no one had followed up to find out why, and how the effect connects to the obesity phenotype observed in these mice.

Restoring neurotensin reverses obesity-related brain changes

To investigate this phenomenon, Lammel and his team used optogenetics, a technique that allows scientists to control brain circuits with light. They found that in normal-diet mice, stimulating a brain circuit that connects to the dopamine network increased their desire to eat high-calorie foods, but in obese mice, the same stimulation had no effect, suggesting that something must have changed.

The reason, they discovered, was that neurotensin was reduced so much in obese mice that it prevented dopamine from triggering the usual pleasure response to high-calorie foods.

“Neurotensin is this missing link,” Lammel said. “Normally, it enhances dopamine activity to drive reward and motivation. But in high-fat diet mice, neurotensin is downregulated, and they lose the strong desire to consume high-calorie foods — even when easily available.”

The researchers then tested ways to restore neurotensin levels. When obese mice were switched back to a normal diet for two weeks, their neurotensin levels returned to normal, dopamine function was restored, and they regained interest in high-calorie foods.

When neurotensin levels were artificially restored using a genetic approach, the mice not only lost weight, but also showed reduced anxiety and improved mobility. Their feeding behaviour also normalised, with increased motivation for high-calorie foods and a simultaneous reduction of their total food consumption in their home cages.

“Bringing back neurotensin seems to be very, very critical for preventing the loss of desire to consume high-calorie foods,” Lammel said. “It doesn’t make you immune to getting obese again, but it would help to control eating behaviour, to bring it back to normal.”

Toward more precise treatments for obesity

Although directly administering neurotensin could theoretically restore feeding motivation in obese individuals, neurotensin acts on many brain areas, raising the risk of unwanted side effects. To overcome this, the researchers used gene sequencing, a technique that allowed them to identify specific genes and molecular pathways that regulate neurotensin function in obese mice.

This discovery provides crucial molecular targets for future obesity treatments, paving the way for more precise therapies that could selectively enhance neurotensin function without broad systemic effects.

“We now have the full genetic profile of these neurons and how they change with high-fat diets,” Lammel said. “The next step is to explore pathways upstream and downstream of neurotensin to find precise therapeutic targets.”

Lammel and Gazit Shimoni plan to expand their research to explore neurotensin’s role beyond obesity, investigating its involvement in diabetes and eating disorders.

“The bigger question is whether these systems interact across different conditions,” Gazit Shimoni said. “How does starvation affect dopamine circuits? What happens in eating disorders? These are the questions we’re looking at next.”

Source: University of California – Berkeley

Possible Link Between Medication and Unexpected Blood Clots

Thrombophilia. Credit: Scientific Animations CC4.0.

Why do medications that are supposed to help patients with chronic inflammatory diseases sometimes lead to blood clots? This is one of the questions that a team of researchers from Aarhus University has sought to answer in a study that has just been published in the journal Inflammopharmacology.

The study suggests that disturbances in the JAK-STAT signalling pathway, an important communication pathway in the body, may contribute to this side effect.

“In the study, we uncover the potential links between components of the JAK-STAK signalling pathway, blood markers in patients with blood clots, and the genetic factors that contribute to the risk of blood clots in patients. This helps improve our understanding of why we see an increased risk of blood clots when using JAK inhibitors,” explains Stine Rabech Haysen, former medical student at the Department of Biomedicine at Aarhus University, who is the first author of the publication. 

The potential of the study

In the study, researchers used publicly available data from a number of published studies about patients with blood clots and compared them with a healthy control group.

They found no direct genetic explanation, but they did find a statistically significant enrichment of genes that are subject to regulatory control of the JAK-STAT signalling pathway among genes whose expression is altered in patients with blood clots.

“Although we cannot draw definitive conclusions about the mechanistic link between the use of JAK inhibitors and the risk of blood clots, our study demonstrates the potential of using data mining to identify and shed light on possible mechanisms of drug side effects,” says one of the study’s senior authors, associate professor at the Department of Biomedicine Per Qvist.

What does this mean for patients?

Although JAK inhibitors rarely lead to blood clots, it’s important to understand the mechanism behind them so that the risk can be reduced.

“For the average person, our study means that we’re getting closer to understanding why some drugs can have dangerous side effects like blood clots. And going forward, our method could help identify and prevent serious side effects, potentially making drug treatment safer,” explains the other senior author of the study, associate professor at the Department of Biomedicine Tue Wenzel Kragstrup.

The researchers will now test the method on other types of medication to see if it can be used to detect side effects more widely.

Source: Aarhus University

New Cannabis Formula will Help Epilepsy, Multiple Sclerosis Sufferers

Photo by Kindel Media on Unsplash

Scientists at the University of South Australia have come up with an innovative solution to improve the effectiveness of cannabidiol to treat epilepsy, multiple sclerosis and other neurodegenerative diseases.

Cannabidiol (CBD), a non-psychoactive cannabis compound, is widely prescribed for its analgesic, anti-inflammatory and neuroprotective properties, but its clinical applications to date have been limited by its poor water solubility and absorption in the human body.

By developing a phospholipid complex – a class of lipids (fats) that contain phosphorus – UniSA researchers have increased the solubility of cannabidiol by up to six times and improved its absorption in the gastrointestinal tract.

Lead researcher Professor Sanjay Garg says the breakthrough, reported in the International Journal of Molecular Sciences, means that patients could experience more consistent and effective results with lower doses of oral CBD medications.

Currently, only a small fraction of orally ingested CBD reaches the bloodstream, limiting its therapeutic effects.

“For this reason, a number of different formulations have been explored, including the production of synthetic CBD, self-emulsifying delivery systems, and encapsulating CBD in gelatine matrix pellets, but all of them have only resulted in minor improvements in bioavailability,” Prof Garg says.

His research team identified the optimal phospholipid composition to form nanosized CBD-PLC particles. Compared to pure CBD, the phospholipid complex improved dissolution rates from 0% to 67.1% within three hours, demonstrating a significant enhancement in drug release.

In cellular uptake studies, CBD-PLC exhibited 32.7% higher permeability than unmodified CBD, ensuring greater absorption through the intestinal wall.

Another critical advantage of this new delivery system is its stability. Traditional CBD formulations degrade over time when exposed to heat, light or oxygen, reducing potency and shelf life.

However, testing over 12 months showed that CBD-PLC retained its performance under varied storage conditions, making it a more reliable option for pharmaceutical applications.

The study’s first author, UniSA PhD candidate Thabata Muta, says the discovery has significant implications for the future of CBD-based therapeutics.

“Improved bioavailability means that lower doses can achieve the same therapeutic effect, potentially reducing side effects and making treatment more cost effective,” Thabata says.

The research team believes that this innovation could be applied beyond CBD, providing a blueprint for enhancing the absorption of other poorly water-soluble drugs.

With the global CBD market projected to grow from USD 7.59 billion in 2023 to USD 202.45 billion by 2032, the findings of this study come at a crucial time, according to the study authors.

The team is now exploring opportunities for commercialisation and clinical trials to validate their new formulation.

Source: University of South Australia