Day: February 28, 2025

New Study Supports Caution on Corticosteroids Use in Lupus Heart Condition

Human heart. Credit: Scientific Animations CC4.0

A new study of more than 2900 patients provides evidence that it’s likely best to use as little corticosteroid medicine as possible when treating people who have lupus pericarditis, a common heart complication of the autoimmune disease Systemic Lupus Erythematosus (SLE).

This study, funded by the National Institutes of Health’s (NIH) National Heart, Lung, and Blood Institute (NHLBI) and led by Johns Hopkins Medicine cardiologists and rheumatologists who led the study say their analysis of data affirms that using steroids to curb heart inflammation and other painful symptoms for lupus patients is also a risk factor for recurring pericarditis,.  

Results of this study were published in JAMA Network Open.

The American Heart Association defines pericarditis as inflammation of the pericardium, the twin-layered sac-like structure surrounds the heart to hold it in place and help protect it. Pericarditis typically presents as chest pain that can be exacerbated by lying flat and improved by leaning forward. This pain can last anywhere from a few days to several months. Treatment options for pericarditis include use of colchicine, an anti-inflammatory medication that prevents the recurrence of pericarditis, and corticosteroids.

Pericarditis occurs in 15% to 30% of patients with SLE, a chronic autoimmune disease that causes the body’s immune system to attack its own tissues. “It is well known that, in the general population, one fifth of patients who experience pericarditis end up experiencing one or more recurrences. Surprisingly, even though pericarditis is the most common cardiac complication of Lupus, we could not find any information on recurrent of pericarditis in this patient population,” says Dr Luigi Adamo, MD, PhD, director of Cardiac Immunology at Johns Hopkins University and co-senior author of this study.

Researchers set out to address this gap in knowledge and examine the risk factors contributing to the recurrence.

For the new analysis, researchers used data gathered among the Hopkins Lupus Cohort, a large ongoing study group that includes information on 2,931 patients diagnosed with SLE between 1988 to 2023 and the investigators focused on data from 590 patients also diagnosed with pericarditis. Pericarditis in the data set was identified using the Safety of Estrogens in Lupus Erythematosus National Assessment – SLE Disease Activity Index (SELENA-SLEDAI), a standard tool in the assessment of SLE clinical activity.   

Study results showed that 20% of patients with Lupus who experienced pericarditis had a recurrence. Recurrent pericarditis was most prevalent among patients within the first year of pericarditis onset, with recurrence decreasing in the following years. Younger patients and those with uncontrolled disease were at greater risk of recurrence. It was noted that oral prednisone therapy, a tool frequently used to treat pericarditis in patients with autoimmune diseases, was associated with a higher chance of pericarditis recurrence in patients with SLE.

“The cardiology literature has shown that use of corticosteroids increases the risk of recurrent pericarditis in the general population. Nevertheless, steroids are very frequently used by rheumatologists to treat lupus pericarditis. Therefore, the findings from this study underscore the importance of minimising oral corticosteroid use in patients with lupus and indicate the need for alternative strategies.” said Andrea Fava, MD, a rheumatologist who specialises in care of patients with lupus and co-senior author of the study.

Source: Johns Hopkins Medicine

Do Starchy Carbs Cause Cavities?

Photo by Caroline Lm on Unsplash

It’s common knowledge that sugar causes cavities, but new research provides evidence that – depending on your genetic makeup – starches could also be a contributing factor.

The study, published in Microorganisms, explores the response of the oral microbiome to starch, finding that the number of copies of a particular gene, AMY1, in combination with starch, alters the complex composition of bacteria that play a role in oral health.

“Most people have been warned that if you eat a bunch of sugar, make sure you brush your teeth,” said Angela Poole, senior author and assistant professor of molecular nutrition in the College of Agriculture and Life Sciences and the College of Human Ecology. “The takeaway finding here is that depending on your AMY1 copy number, you may want to be just as vigilant about brushing your teeth after eating those digestible starches.”

Researchers, including first author Dorothy Superdock, PhD ’23, collected saliva samples from 31 subjects with a range of AMY1 copy numbers – copies of the AMY1 gene in the DNA – and added starch to the cultured samples, or biofilms, to see how the bacterial makeup changed. They found that, in general, the diversity of bacteria decreased when starch was added. For those samples with high numbers of AMY1, the starch significantly reduced the proportions of two bacteria, Atopobium and Veillonella, while Streptococcus appeared to increase.

All three bacteria are associated with tooth decay or gum disease, Poole said.

“Some increased and some decreased, so it’s not so straightforward as saying, ‘The whole thing is good or bad,’” Poole said. “It’s an interaction, but it looks like the AMY1 copy number, as well as which species are present in people’s mouths when they eat starch, is affecting the risk for developing these diseases.”

AMY1 codes for the salivary amylase enzyme, which helps break down starch in the mouth. Previous studies have associated AMY1 with cavities and periodontal disease. Poole, in prior studies, found that a high AMY1 copy number is associated with higher levels of the species Porphyromonas endodontalis, which is strongly associated with periodontitis and gum disease.

But how the salivary amylase enzyme interacts with its main substrate, starch, to alter the oral microbiome and increase disease risk was unclear.

“That’s what we wanted to know in this experiment,” Poole said. “What’s going on in the mouth if someone eats starch, and is the answer different if their copy number is high or if it’s low? What we found was that there are other bacteria involved in these processes and that the changes depended on AMY1.”

The researchers also found evidence that the oral microbiome has co-evolved in response to increasing copies of AMY1, which is found in higher numbers in populations where there’s a long history of agriculture and starch consumption. In the pool of 31 samples, taken locally in Ithaca, the AMY1 number ranged from two to 20 copies.

“The populations that historically had greater access to starch tend to have more copies,” Poole said, “which makes sense from a practical standpoint, because it would have given you a survival advantage when food is scarce, to be able to break down those starches more efficiently.”

In saliva samples with a high AMY1 copy number, the researchers saw increased populations of bacteria, like Streptococcus, that feed off the starch’s sugars.

“If someone has a high copy number, they break down starch efficiently, and bacteria that like those sugars are going to grow more in that person’s mouth,” Poole said. “So you can have species behave differently based on the different substrates. It’s pretty incredible – how we adapt and these microbes turn around and adapt, too.”

Source: Cornell University

Not Just for Respiration: Lungs Also Produce Blood Cells

Credit: Scientific Animations CC4.0

For many years, scientists assumed that blood production took place in the bone marrow, providing the 200 billion blood cells needed per day. But now, researchers at UCSF are showing it’s also happening in the lungs. 

They found haematopoietic stem cells (HSCs) in human lung tissue that make red blood cells, as well as megakaryocytes, which produce the platelets that form blood clots. The findings appear in the journal Blood.

The work, which was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH), suggests the lungs could be a potent source for life-saving stem cell transplants.

“For decades, bone marrow transplants have been a lynchpin in the treatment of cancers like leukemia,” said Mark Looney, MD, professor of medicine and laboratory medicine at UCSF and senior author of the paper. “The lung HSCs could prove to be a second and significant reservoir of these precious stem cells.”

From mouse to human

In 2017, the UCSF team found cells in the mouse lung making 50% of the mouse’s platelets

They also discovered lung stem cells in mice that made all the constituents of blood, including red blood cells, megakaryocytes and several types of immune cells.

Looney’s group wanted to prove this was also happening in people. So, they obtained donated samples of lung, bone marrow and blood, and compared what they found in each tissue.

Screening a golf-ball-sized volume of lung tissue, the scientists found stem cells in the lung that strongly resembled the well-known HSCs of bone marrow. Surprisingly, the HSCs were found at similar rates in both lung and bone marrow. 

“The lung HSCs weren’t one-offs – they were a reliable presence in the lungs,” said Catharina Conrad, MD, PhD, postdoctoral scholar in Looney’s lab and first author of the paper. “But we still needed to know that they were actually capable of making blood.”

So, the scientists coaxed lung and bone marrow HSCs to mature in petri dishes and found the lung HSCs were productive just like the bone marrow HSCs.

“Both types of HSCs thrived in our gold-standard stem cell experiment, but the lung HSC colonies made more red blood cells and megakaryocytes, while the bone marrow colonies tended to make more immune cells,” Looney said.

The human lung HSCs also could restore bone marrow in HSC-deficient mice. The discovery confirmed Looney’s earlier discovery that the mouse lung and bone marrow complemented one another in producing blood, even sending stem cells to restore one another.

“We think these HSCs could be a reservoir of haematopoiesis in a particular organ, in this case the lung, that gets activated whenever the body needs more of any part of the blood, whether it’s platelets, red blood cells or immune cells,” Looney said.

Getting to know the new HSC in town

To show that the lung HSCs truly resided in the lung, and weren’t just escapees from the bone marrow, Conrad and Looney looked for the HSCs in human lung tissue samples.

They found them between blood vessels in an arrangement that was reminiscent of what’s seen in bone marrow.

“They really seem to live there and aren’t just passing through,” Conrad said. 

Lastly, the team analysed the output of routine bone marrow transplants, which today begin with a blood draw from a donor followed by a screen for stem cells. 

Remarkably, nearly a fifth of the stem cells isolated for bone marrow transplant carried the signature of lung HSCs – suggesting that cells in “bone marrow transplants” aren’t only from bone marrow.

There’s a lot more to learn about the lung HSCs. Could the different pools of HSCs serve different therapeutic roles in medicine? Why do the lungs themselves need to make blood?

“The lungs are critical to blood circulation, so it’s tantalising to see the lung HSCs as an emergency reservoir for red blood cell and platelet production,” Looney said. “Now that we know they exist, it opens up a lot of new opportunities for a therapy, hematopoietic stem cell transplantation, that is very commonly used for patients with the need.”

Source: EurekAlert!

New Study Reveals the Burden of Critical Illness in African Hospitals

Photo by Alex Fedini on Pixabay

One in eight patients in hospitals in Africa is critically ill, and one in five of the critically ill die within a week, according to a new study in The Lancet. The researchers behind the largest study of critical illness in Africa to date conclude that many of these lives could have been saved with access to cheap life-saving treatments.

The study is the first large-scale mapping of critically ill patients in Africa. Nearly 20 000 patients in 180 hospitals in 22 African countries were surveyed in the study.

Being critically ill means having severely affected vital functions, such as extremely low blood pressure or low levels of oxygen in the blood. In the new study, researchers show that one in eight patients in African hospitals, 12.5%, is in this condition. Of these, one in five, 21%, die within a week, compared to 2.7% of those who are not critically ill.

A large proportion of critically ill patients, 69%, are treated in general wards rather than intensive care units. More than half of critically ill patients, 56%, do not receive even the basic critical care they need, such as oxygen therapy, intravenous fluids or simple airway management.

“Our study shows that there is a large and often neglected group of patients with critical illness in Africa,” says first author Tim Baker, Associate Professor at the Department of Global Public Health at Karolinska Institutet.

The researchers behind the study emphasise that these are basic but crucial health interventions that can make a big difference.

“If all patients had access to essential emergency and critical care, we could significantly reduce mortality. Moreover, these interventions are inexpensive and can be provided in general wards,” says Carl Otto Schell, researcher at the Department of Global Public Health at Karolinska Institutet and one of the initiators of the study.

Source: EurekAlert!

The Big Chill: Is Cold-water Immersion Good for Health?

Photo by Yaroslav Shuraev

From early ocean dips to ice-cold polar plunges, cold-water immersion is increasingly popular among athletes and wellness warriors. But how much of the hype is backed by science?

In the most comprehensive systematic review and meta-analysis of its kind, University of South Australia researchers have taken a deep dive into the effects of cold-water immersion on health and wellbeing.

Analysing data from 11 studies with 3177 participants, researchers found that cold-water immersion may lower stress, improve sleep quality, and boost quality of life.

UniSA researcher Tara Cain says the study, which appears in PLOS ONE, reveals time-dependant and nuanced effects on health and wellbeing measures.

“Cold-water immersion has been extensively researched and used in sporting contexts to help athletes recover, but despite its growing popularity among health and wellbeing circles, little is known about its effects on the general population,” Cain says.

“In this study, we noted a range of time-dependant results. Firstly, we found that cold-water immersion could reduce stress levels, but for only about 12 hours post exposure.

“We also noted that participants who took 20, 60, or 90 second cold showers reported slightly higher quality of life scores. But again, after three months these effects had faded.

“Benefits may be gained from cold showers as well, with one study reporting that participants who took regular cold showers experiencing a 29% reduction in sickness absence.

“We also found some links to cold-water immersion and better sleep outcomes, but the data was restricted to males, so its broader application is limited.

“And while there have been many claims that cold-water immersion experiences can boost your immunity and mood, we found very little evidence to support these claims.”

Cold-water immersion involves immersing the body partially or fully in cold water, in temperatures typically ranging from 10-15°C, and in this study, data was only included if exposure was at or above chest level, and for a minimum time of 30 seconds. It included cold showers, ice baths and cold plunges.

Co-researcher, UniSA’s Dr Ben Singh says the study also showed that cold-water immersion caused a temporary increase in inflammation.

“At first glance this seems contradictory, as we know that ice baths are regularly used by elite athletes to reduce inflammation and muscle soreness after exercise,” Dr Singh says.

“The immediate spike in inflammation is the body’s reaction to the cold as a stressor. It helps the body adapt and recover and is similar to how exercise causes muscle damage before making muscles stronger, which is why athletes use it despite the short-term increase.

“Knowing this, people with pre-existing health conditions should take extra care if participating in cold-water immersion experiences as the initial inflammation could have detrimental health impacts.”

Researchers say that while the findings highlight the potential benefits of cold-water immersion, they also underscore the highly time-dependent and contextual nature of its effects.

“Whether you are an elite athlete or everyday wellness seeker – it’s important to understand the effects of what you put your body through,” Cain says.

“Right now, there isn’t enough high-quality research to say exactly who benefits most or what the ideal approach is to cold-water immersion. More long-term studies, among more diverse populations, are needed to understand its lasting effects and practical applications.”

Source: University of South Australia