Year: 2025

Time of Injury Matters: Circadian Rhythms Affect Muscle Repair

Photo by Mat Napo on Unsplash

Circadian rhythms doesn’t just dictate when we sleep — it also determines how quickly our muscles heal. A new Northwestern Medicine study in mice, published in Science Advances, suggests that muscle injuries heal faster when they occur during the body’s natural waking hours.

The findings could have implications for shift workers and may also prove useful in understanding the effects of aging and obesity, said senior author Clara Peek, assistant professor of biochemistry and molecular genetics at Northwestern University Feinberg School of Medicine.

The study also may help explain how disruptions like jetlag and daylight saving time changes impact circadian rhythms and muscle recovery.

“In each of our cells, we have genes that form the molecular circadian clock,” Peek said. “These clock genes encode a set of transcription factors that regulate many processes throughout the body and align them with the appropriate time of day. Things like sleep/wake behaviour, metabolism, body temperature and hormones — all these are circadian.”

How the study was conducted

Previous research from the Peek laboratory found that mice regenerated muscle tissues faster when the damage occurred during their normal waking hours. When mice experienced muscle damage during their usual sleeping hours, healing was slowed.

In the current study, Peek and her collaborators sought to better understand how circadian clocks within muscle stem cells govern regeneration depending on the time of day.

For the study, Peek and her collaborators performed single-cell sequencing of injured and uninjured muscles in mice at different times of the day. They found that the time of day influenced inflammatory response levels in stem cells, which signal to neutrophils — the “first responder” innate immune cells in muscle regeneration.

“We discovered that the cells’ signalling to each other was much stronger right after injury when mice were injured during their wake period,” Peek said. “That was an exciting finding and is further evidence that the circadian regulation of muscle regeneration is dictated by this stem cell-immune cell crosstalk.”

The scientists found that the muscle stem cell clock also affected the post-injury production of NAD+, a coenzyme found in all cells that is essential to creating energy in the body and is involved in hundreds of metabolic processes.

Next, using a genetically manipulated mouse model, which boosted NAD+ production specifically in muscle stem cells, the team of scientists found that NAD+ induces inflammatory responses and neutrophil recruitment, promoting muscle regeneration.  

Why it matters

The findings may be especially relevant to understanding the circadian rhythm disruptions that occur in aging and obesity, Peek said.

“Circadian disruptions linked to aging and metabolic syndromes like obesity and diabetes are also associated with diminished muscle regeneration,” Peek said. “Now, we are able to ask: do these circadian disruptions contribute to poorer muscle regeneration capacity in these conditions? How does that interact with the immune system?”

What’s next

Moving forward, Peek and her collaborators hope to identify exactly how NAD+ induces immune responses and how these responses are altered in disease.

“A lot of circadian biology focuses on molecular clocks in individual cell types and in the absence of stress,” Peek said. “We haven’t had the technology to sufficiently look at cell-cell interactions until recently. Trying to understand how different circadian clocks interact in conditions of stress and regeneration, is really an exciting new frontier.”

Source: Northwestern University

Over-the-counter Pain Relievers Linked to Improved Recovery from Concussion

Credit: Pixabay CC0

People who take over-the-counter pain relievers after a concussion may recover faster than those who do not take pain relievers, according to a preliminary study that will be presented at the American Academy of Neurology’s 77th Annual Meeting taking place April 5–9, 2025.

The study does not prove that pain relievers improve recovery after concussion; it only shows an association.

“These results are exciting as there are limited treatment options for concussion, and over-the-counter pain relievers are readily available and inexpensive,” said study author Kyle Arnold, MD, of the University of Washington in Seattle and a member of the American Academy of Neurology.

“If these results can be confirmed by a controlled study, they could guide us to possible treatment options for people after a concussion.”

The cohort study was conducted by the NCAA and US Department of Defense CARE Consortium and looked at NCAA athletes and military cadets who had concussions. A total of 813 people took over-the-counter pain relievers such as acetaminophen or ibuprofen and other non-steroidal anti-inflammatory drugs after their concussion and 848 people did not take any pain relievers.

Researchers looked at the amount of time it took the athletes to be cleared to return to activities with no restrictions at both 50% recovery and 90% recovery, meaning when 50% of the athletes in the study recovered and then later when 90% recovered.

People who took the pain relievers were 20% more likely to have a faster time before they were cleared to return to activities with no restrictions than those who did not take pain relievers. Those who took the medications were cleared at 50% recovery an average of two days faster, and at 90% recovery an average of seven days faster than those who took no medication.

People who took pain relievers were also about 15% more likely to return to having no symptoms more quickly than those who did not take pain relievers. At 50% recovery, those taking the medications had no symptoms one day sooner than those not taking the medications. At 90% recovery, they had no symptoms three days sooner.

Those who took pain relievers also had lower scores on tests of how severe their symptoms were overall and how severe their headaches were. The researchers also found that the earlier people took the pain relievers after the injury, the faster they recovered. For instance, at 50% recovery, those who started using pain relievers on the first day of their injury returned to play and had resolution of symptoms approximately eight days faster than those who started taking them after five or more days.

There was no difference between the type of pain reliever taken and how quickly people recovered.

“Early medication use appeared to be linked to shorter recovery times, but these findings require further validation through controlled trials,” Arnold said. “In the meantime, these preliminary results may help inform potential treatment options for people recovering from concussions, but additional studies are needed to provide more definitive recommendations.”

Source: American Academy of Neurology

Lifestyle and Environmental Factors Affect Health and Ageing More than Genes

Photo by Mari Lezhava on Unsplash

A new study led by researchers from Oxford Population Health has shown that a range of environmental factors, including lifestyle (smoking and physical activity) and living conditions, have a greater impact on health and premature death than our genes.

The researchers used data from nearly half a million UK Biobank participants to assess the influence of 164 environmental factors and genetic risk scores for 22 major diseases on ageing, age-related diseases, and premature death. The study is published in Nature Medicine.

Key findings:

  • environmental factors explained 17% of the variation in risk of death, compared to less than 2% explained by genetic predisposition (as we understand it at present);
  • of the 25 independent environmental factors identified, smoking, socioeconomic status, physical activity, and living conditions had the most impact on mortality and biological ageing;
  • smoking was associated with 21 diseases; socioeconomic factors such as household income, home ownership, and employment status, were associated with 19 diseases; and physical activity was associated with 17 diseases;
  • 23 of the factors identified are modifiable;
  • early life exposures, including body weight at 10 years and maternal smoking around birth, were shown to influence ageing and risk of premature death 30-80 years later;
  • environmental exposures had a greater effect on diseases of the lung, heart and liver, while genetic risk dominated for dementias and breast cancer.

Professor Cornelia van Duijn, St Cross Professor of Epidemiology at Oxford Population Health and senior author of the paper, said, “Our research demonstrates the profound health impact of exposures that can be changed either by individuals or through policies to improve socioeconomic conditions, reduce smoking, or promote physical activity.

“While genes play a key role in brain conditions and some cancers, our findings highlight opportunities to mitigate the risks of chronic diseases of the lung, heart and liver which are leading causes of disability and death globally. The early life exposures are particularly important as they show that environmental factors accelerate ageing early in life but leave ample opportunity to prevent long-lasting diseases and early death.”

The authors used a unique measure of ageing (a new ‘ageing clock’) to monitor how rapidly people are ageing using blood protein levels. This enabled them to link environmental exposures that predict early mortality with biological ageing. This measure was previously shown to detect age-related changes, not only in the UK Biobank but also in two other large cohort studies from China and Finland.

Dr Austin Argentieri, lead author of the study at Oxford Population Health and Research Fellow at Massachusetts General Hospital, said “Our exposome approach allowed us to quantify the relative contributions of the environment and genetics to ageing, providing the most comprehensive overview to date of the environmental and lifestyle factors driving ageing and premature death. These findings underscore the potential benefits of focusing interventions on our environments, socioeconomic contexts, and behaviours for the prevention of many age-related diseases and premature death.”

Professor Bryan Williams, Chief Scientific and Medical Officer at the British Heart Foundation, added ‘Your income, postcode and background shouldn’t determine your chances of living a long and healthy life. But this pioneering study reinforces that this is the reality for far too many people.

“We have long known that risk factors such as smoking impact our heart and circulatory health, but this new research emphasises just how great the opportunity is to influence our chances of developing health problems, including cardiovascular disease, and dying prematurely. We urgently need bold action from Government to target the surmountable barriers to good health that too many people in the UK are facing.”

The research shows that whilst many of the individual exposures identified played a small part in premature death, the combined effect of these multiple exposures together over the life course (referred to as the exposome) explained a large proportion of premature mortality variation. The insights from this study pave the way for integrated strategies to improve the health of ageing populations by identifying key combinations of environmental factors that shape risk of premature death and many common age-related diseases simultaneously.

Professor van Duijn said, “Studies on environmental health have tended to focus on individual exposures based on a specific hypothesis. While this approach has seen many successes, the method has not always yielded reproducible and reliable findings. Instead, we have followed a ‘hypothesis free’ exposome approach and studied all available exposures to find the major drivers of disease and death.

“We have made a big leap forward in understanding how to provide accurate evidence on the causes and consequences of age-related diseases by combining novel computational methods with clinical and epidemiological knowledge to explore the interplay between multiple exposures. In an ever-changing environment, it is critical that we combine these techniques with novel advances in smart technology to monitor lifestyle and environment, as well as with biological data, to understand the impact of the environment over time. There are a lot of questions still to be answered related to diet, lifestyle, and exposure to new pathogens (such as bird flu and COVID-19) and chemicals (think of pesticides and plastics), and the impact of environmental and genetic factors in different populations.”

The paper. ‘Integrating the environmental and genetic architectures of aging and mortality‘. can be ready in Nature Medicine.

Source: University of Oxford

Engineered Cartilage from Nasal Septum Cells helps Treat Complex Knee Injuries

Researchers grow cartilage replacements from cells of the nasal septum to repair cartilage injuries in the knee. (Photo: University of Basel, Christian Flierl)

An unlucky fall while skiing or playing football can spell the end of sports activities. Damage to articular cartilage does not heal by itself and increases the risk of osteoarthritis. Researchers at the University of Basel and the University Hospital Basel have now shown that even complex cartilage injuries can be repaired with replacement cartilage engineered from cells taken from the nasal septum.

A team at the Department of Biomedicine led by Professor Ivan Martin, Dr Marcus Mumme and Professor Andrea Barbero has been developing this method for several years. It involves extracting the cells from a tiny piece of the patient’s nasal septum cartilage and then allowing them to multiply in the laboratory on a scaffold made of soft fibres. Finally, the newly grown cartilage is cut into the required shape and implanted into the knee joint.

Earlier studies have already shown promising results. “Nasal septum cartilage cells have particular characteristics that are ideally suited to cartilage regeneration,” explains Professor Martin. For example, it has emerged that these cells can counteract inflammation in the joints.

More mature cartilage shows better results

In a clinical trial involving 98 participants at clinics in four countries, the researchers compared two experimental approaches. One group received cartilage grafts that had matured in the lab for only two days before implantation – similar to other cartilage replacement products. For the other group, the grafts were allowed to mature for two weeks. During this time, the tissue acquires characteristics similar to native cartilage.

For 24 months after the procedure, the participants self-assessed their well-being and the functionality of the treated knee through questionnaires. The results, published in the scientific journal Science Translational Medicine, showed a clear improvement in both groups. However, patients who received more mature engineered cartilage continued to improve even in the second year following the procedure, overtaking the group with less mature cartilage grafts.

Magnetic resonance imaging (MRI) further revealed that the more mature cartilage grafts resulted in better tissue composition at the site of the implant, and even of the neighbouring cartilage. “The longer period of prior maturation is worthwhile,” emphasizes Anke Wixmerten, co-lead author of the study. The additional maturation time of the implant, she points out, only requires a slight increase in effort and manufacturing costs, and gives much better results.

Particularly suited to larger and more complex cartilage injuries

“It is noteworthy that patients with larger injuries benefit from cartilage grafts with longer prior maturation periods,” says Professor Barbero. This also applies, he says, to cases in which previous cartilage treatments with other techniques have been unsuccessful.

“Our study did not include a direct comparison with current treatments,” admits Professor Martin. “However, if we look at the results from standard questionnaires, patients treated with our approach achieved far higher long-term scores in joint functionality and quality of life.”

Based on these and earlier findings, the researchers now plan to test this method for treating osteoarthritis – an inflammatory disease that causes joint cartilage degeneration, resulting in chronic pain and disability.

Two large-scale clinical studies, funded by the Swiss National Science Foundation and the EU research framework programme Horizon Europe, are about to begin. These studies will explore the technique’s effectiveness in treating a specific form of osteoarthritis affecting the kneecaps (ie, patellofemoral osteoarthritis). The activities will further develop in Basel the field of cellular therapies, strategically defined as a priority area for research and innovation at the University of Basel and University Hospital Basel.

Source: University of Basel

Össur South Africa Launches ‘What’s Your Epic?’ to Further Empower Those Living with Limb Loss

Transform Lives, Break Barriers, Redefine Possibilities

Dane Wilson, Michael Stevens and Reuben van Niekerk of Jumping Kids, a nonprofit that supports young amputees.

Ahead of this year’s Cape Epic, Össur South Africa has announced the launch of its ‘What’s Your Epic?’ initiative. In partnership with Aramex, this campaign supports three nonprofit organisations (NPOs) – all of which provide hope, mobility, and independence to individuals with limited movement. ‘What’s Your Epic?’ aims to further empower amputees to overcome barriers, move freely, and live life to the fullest.

“Movement is a fundamental right. While not everyone may be an elite athlete, everyone deserves the freedom to move,” says Blignaut Knoetze, MD of Össur South Africa, a global provider of non-invasive orthopaedics. “We are committed to improving people’s mobility so that they can live their life without limitations. Our efforts and expertise are focused on helping those living with limb loss to be confident, safe and mobile, regardless of injuries or conditions that could compromise their quality of life.”

To help drive awareness for these NPOs and the valuable work that they do, so closely aligned with its own mission, Össur South Africa has entered three teams into the prestigious Cape Epic mountain bike race, with each team representing and raising funds for one of the selected NPOs. These teams not only showcase the resilience of their riders but also shine a light on the important and essential work carried out by these organisations.

The NPOs and Riders Making a Difference

Rejuvenate SA
After an elective amputation in 2020, Travis Warwick-Oliver turned to adaptive sports and co-founded Rejuvenate SA with prosthetist Luvan Cass. Their nonprofit provides mobility aids and vocational training to underprivileged individuals, particularly in rural KwaZulu-Natal. As they gear up for another Cape Epic, they see it as more than just a race – it’s an opportunity to raise awareness and inspire involvement. “We’re not just trying to get people moving; we’re trying to create a better future and give them the opportunity to fend for themselves,” explains Cass. Their journey embodies resilience, community, and the belief that movement is the key to opportunity and dignity.

Jumping Kids
Led by director Michael Stevens, Jumping Kids supports young amputees by providing prosthetics, education, and sporting opportunities – equipping children with limb loss with the prosthetic technology they need to run, play, and chase their dreams. Ambassadors Reuben van Niekerk and Dane Wilson (both amputees) advocate for mobility solutions, emphasising that the ‘What’s Your Epic?’ campaign is about more than just sports—it’s about redefining possibilities. “Whether through donations, raising awareness, or inspiring others, every action helps build a future where children with disabilities can thrive,” says Stevens.

Zimele NPC
Rentia Retief lost her leg in a 2023 cycling accident. Just a year later, she is set to compete in the Cape Epic alongside teammate Jackie Church. Supporting Zimele NPC (‘independence’ in Xhosa), a nonprofit dedicated to empowering adult amputees to lead independent lives, Rentia is proving that disability does not define potential. “Being part of this experience is truly inspiring,” says Church, an Össur South Africa employee. “Rentia is showing others what’s possible and breaking barriers for amputees everywhere.”

“These three NPOs are lifelines for those who often lack essential resources or healthcare,” says Knoetze, Össur South Africa aims to support them by raising vital funds, thereby helping them to expand their impact and, in turn, help ensure that more amputees have the freedom to move, dream, and live fully.

“’What’s Your Epic?’ is more than a fundraising initiative—it’s a movement to shift perceptions, raise awareness, and advocate for individuals with limb loss,” adds Knoetze. “Movement changes lives. Together, we can empower amputees to overcome challenges, dream boldly, and achieve the extraordinary.”

What’s your Epic?

To support these heroes taking part in the upcoming Cape Epic, and help to extend the impact of these three NPOs (Rejuvenate SA, Jumping Kids and Zimele), please visit GivenGain:  https://www.givengain.com/event/ossur-sa-giving-back.

Renewed Commitment to Strengthen Public Health Surveillance and Address Disease Outbreaks in Africa

South Africa, March 6, 2025 – The Africa Centres for Disease Control and Prevention (Africa CDC) and Illumina (NASDAQ: ILMN), a global leader in sequencing technology, strengthen their collaboration to advance the Africa Pathogen Genomics Initiative (Africa PGI).

The renewed commitment builds on existing efforts over the last 4 years to address COVID-19 and other infectious disease outbreaks, as well as tackle emerging public health threats and endemic diseases like tuberculosis, malaria, and cholera.

Together, both organisations are focused on broadening access to next-generation sequencing (NGS) tools and expertise and enhancing public health surveillance and laboratory networks across Africa.

“Africa CDC is pleased to continue its collaboration with Illumina and other partners to enhance Africa’s capacity to detect and respond to emerging health threats. Genomics is transforming disease surveillance, and this collaboration will help integrate next-generation sequencing into routine public health systems. Our goal remains clear – by the end of 2025, all 55 National Public Health Institutes (NPHIs) will have operational NGS capacity to better protect Africa’s health.” said H.E. Dr. Jean Kaseya, Director-General, Africa CDC.

Since the inception of this collaboration in March 2021, Illumina has provided significant contributions, including next-generation sequencing (NGS) platforms, reagents, and training support. As a part of this association, additional sequencing instruments and reagents will be provided to around 25 countries. 

“At Illumina, we are driven by the power of genomics to positively impact the world and are deeply committed to improving global health. By expanding access to cutting-edge sequencing technologies, we are helping to create a future where every country can rapidly detect and respond to health threats. Our association with Africa CDC brings us closer to a world where genomics is integrated into routine public health surveillance – enabling faster, more effective responses to disease outbreaks and ultimately saving lives.” said Belinda Ngongo, Director Global Health, Illumina. 

Launched in October 2020, Africa PGI is a flagship initiative of Africa CDC designed to enhance public health surveillance systems across the continent. The program focuses on integrating pathogen genomics and bioinformatics into routine public health efforts, allowing for rapid responses to infectious disease threats, enhanced control and prevention, and the development of more effective diagnostics, treatments, and vaccines. This work will further Africa PGI’s vision of building a resilient, integrated, proactive, and sustainable molecular diagnostic, genomic surveillance, and epidemiology ecosystem across Africa.

Novel Stem Cell Therapy Repairs Irreversible Corneal Damage in Clinical Trial

Photo: Unsplash

An expanded clinical trial that tested a ground-breaking, experimental stem cell treatment for blinding cornea injuries found the treatment was feasible and safe in 14 patients who were treated and followed for 18 months, and there was a high proportion of complete or partial success. The results of this new phase 1/2 trial are published in Nature Communications.

The treatment, called cultivated autologous limbal epithelial cells (CALEC), was developed at Mass Eye and Ear, a member of the Mass General Brigham healthcare system. The innovative procedure consists of removing stem cells from a healthy eye with a biopsy, expanding them into a cellular tissue graft in a novel manufacturing process that takes two to three weeks, and then surgically transplanting the graft into the eye with a damaged cornea.

“Our first trial in four patients showed that CALEC was safe and the treatment was possible,” said principal investigator Ula Jurkunas, MD, associate director of the Cornea Service at Mass Eye and Ear and professor of Ophthalmology at Harvard Medical School. “Now we have this new data supporting that CALEC is more than 90% effective at restoring the cornea’s surface, which makes a meaningful difference in individuals with cornea damage that was considered untreatable.”

Researchersshowed CALEC completely restored the cornea in 50% of participants at their 3-month visit and that rate of complete success increased to 79% and 77% at their 12- and 18-month visits, respectively. 

With two participants meeting the definition of partial success at 12 and 18 months, the overall success of CALEC was 93% and 92% at 12 and 18 months.  Three participants received a second CALEC transplant, one of whom reached complete success by the study end visit. An additional analysis of CALEC’s impact on vision showed varying levels of improvement of visual acuity in all 14 CALEC patients.

CALEC displayed a high safety profile, with no serious events occurring in either the donor or recipient eyes. One adverse event, a bacterial infection, occurred in one participant, eight months after the transplant due to chronic contact lens use. Other adverse events were minor and resolved quickly following the procedures.

CALEC remains an experimental procedure and is currently not offered at Mass Eye and Ear or any U.S. hospital, and additional studies will be needed before the treatment is submitted for federal approval.

The cornea is the clear, outermost layer of the eye. It’s outer border, the limbus, contains a large volume of healthy stem cells called limbal epithelial cells, which maintain the eye’s smooth surface. When a person suffers a cornea injury, such as a chemical burn, infection or other trauma, it can deplete the limbal epithelial cells, which can never regenerate. The resulting limbal stem cell deficiency renders the eye with a permanently damaged surface where it can’t undergo a corneal transplant, the current standard of care for vision rehabilitation. People with these injuries often experience persistent pain and visual difficulties.

This need led Jurkunas as a junior scientist and Dana, director of the Cornea Service at Mass Eye and Ear, to explore a new approach for regenerating limbal epithelial cells. Nearly two decades later, following preclinical studies and collaborations with researchers at Dana-Farber and Boston Children’s, it was possible to consistently manufacture CALEC grafts that met stringent quality criteria needed for human transplantation.

As an autologous therapy, one limitation of this approach is that it is necessary for the patient to have only one involved eye so a biopsy can be performed to get starting material from the unaffected normal eye.

“Our future hope is to set up an allogeneic manufacturing process starting with limbal stem cells from a normal cadaveric donor eye,” said Ritz “This will hopefully expand the use of this approach and make it possible to treat patients who have damage to both eyes.”

Source: Mass Eye and Ear

The Intersection of Innovation and Stability in Pharmacy Technology

Photo by National Cancer Institute on Unsplash


By Mthobisi Kgathi, Business Development Manager – Health & Retail Solutions, BCX

South Africa’s pharmacy sector is at a crossroads, navigating regulatory pressures, patient expectations, and the rapid shift to digital healthcare. While innovation promises efficiency and improved patient outcomes, stability remains critical—without it, even the most advanced technologies can fail.

Pharmacies are a cornerstone of South Africa’s healthcare system, providing essential medicines and bridging the gap between doctors and patients. As the industry embraces digitalisation, it must balance progress with reliability, accuracy, and compliance.

Challenges Facing Community Pharmacies

Community pharmacies operate in a competitive environment where operational reliability and strict regulatory adherence are non-negotiable. Key challenges include:

  • Regulatory Compliance: The South African Pharmacy Council (SAPC) enforces stringent rules on record-keeping, patient confidentiality, and dispensing protocols. Non-compliance risks fines, reputational damage, or closure.
  • Workforce Strain: Pharmacists face mounting workloads, managing high prescription volumes while maintaining care standards. Digital tools must ease their burden, not add to it.
  • Cybersecurity Risks: With sensitive patient data stored digitally, pharmacies are prime targets for cyberattacks. Breaches can lead to legal and financial repercussions.
  • Evolving Patient Expectations: Patients now demand more than just medication—they want advisory services, chronic disease management, and digital conveniences like e-prescriptions and tele-pharmacy.

These factors underscore the need for cutting-edge yet resilient technology that enhances operations without disrupting care.

A Day in the Life of a Pharmacist

Maria, a pharmacist in Cape Town, exemplifies the balancing act required in modern pharmacies. Her day begins early, managing prescriptions and patient queries. Her pharmacy recently adopted an AI-powered system to streamline stock management, predict patient needs, and track prescriptions.

While the technology improves efficiency, Maria feels the pressure of ensuring it doesn’t compromise accuracy. A system alert about a potential drug interaction highlights how technology can be a vital ally in safeguarding patient health. Yet, Maria knows her community values her expertise and judgement above all.

For pharmacies like Maria’s, successful digitalisation means integrating technology seamlessly into daily operations—enhancing efficiency, improving patient care, and maintaining trust.

Why Stability is Crucial in Digital Transformation

Digital transformation is essential but must be approached cautiously. Unstable or poorly integrated systems can lead to errors, downtime, and non-compliance. Stability ensures that innovation supports, rather than disrupts, core pharmacy functions.

For South African pharmacies, stability means:

  • Consistent Performance: Systems must function reliably to avoid disruptions in dispensing and patient care.
  • Regulatory Alignment: Digital solutions must keep pace with compliance requirements to prevent legal issues.
  • Interoperability: Pharmacy systems should integrate smoothly with healthcare providers, insurers, and supply chains.
  • Data Security: Protecting sensitive patient information is paramount, requiring robust cybersecurity measures.

The Role of Technology Providers

Technology providers must prioritise stability alongside innovation. Their goal should be to create scalable, compliant solutions that enhance pharmacy operations without compromising reliability.

Pharmacy management systems have already improved stock control, reporting, and dispensing accuracy. The next phase involves incorporating predictive analytics, AI-driven efficiencies, and cloud-based solutions—all while ensuring uninterrupted service.

Take Unisolv, a widely used software in South African pharmacies. Known for its reliability, its upcoming modernisation aims to maintain operational continuity while introducing new functionalities. This approach balances innovation with the familiarity and dependability pharmacy staff rely on.

Beyond Unisolv, BCX is expanding its pharmacy solutions portfolio, focusing on workflow automation, data security, and patient engagement. From AI-driven prescription analysis to cloud-based compliance tracking, BCX is shaping the future of pharmacy technology with stability at its core.

Strategic Considerations for the Future

To ensure sustainable digital transformation, South African pharmacies must adopt a long-term, strategic approach:

  • Phased Rollouts: Gradual implementation minimises disruption and allows teams to adapt.
  • Comprehensive Training: Staff must be equipped to maximise the potential of new systems.
  • Vendor Partnerships: Technology providers should act as long-term partners, not just suppliers.
  • Data-Driven Insights: Analytics can optimise stock levels, predict demand, and personalise patient care.

The Way Forward

As community pharmacies play a vital role in accessible healthcare, technological advancements must empower rather than disrupt their services. Stability is the foundation of this evolution, ensuring that innovations are seamlessly integrated without jeopardising reliability.

Technology providers must focus on creating solutions that are secure, practical, and sustainable. Success will not only be defined by what is new but also by what remains trusted and indispensable.

By embedding resilience into digital strategies, South African pharmacies can confidently embrace the future—leveraging technology to enhance care while safeguarding the principles of trust, accuracy, and compliance. Stability ensures that pharmacies can continue serving their communities effectively, even as they adopt new tools to meet evolving demands.

In the end, the balance between innovation and stability will determine the success of digital transformation in South Africa’s pharmacy sector.

Extreme Heat may Speed up Aging in Older Adults

Photo by Ketut Subiyanto

A new USC Leonard Davis School of Gerontology study suggests greater exposure to extreme heat may accelerate biological aging in older adults, raising new concerns about how climate change and heat waves could affect long-term health and aging at the molecular level.

People in neighbourhoods that experience more days of high heat show greater biological aging on average than residents of cooler regions, said Jennifer Ailshire, senior author of the study, which appears in Science Advances. Ailshire is professor of gerontology and sociology at the USC Leonard Davis School.

Biological age is a measure of how well the body functions at the molecular, cellular, and system levels, as opposed to chronological age based on one’s birthdate; having a biological age greater than one’s chronological age is associated with higher risk for disease and mortality. While exposure to extreme heat has itself long been associated with negative health outcomes, including increased risk of death, heat’s link to biological aging has been unclear.

Measuring epigenetic changes

Ailshire and her coauthor Eunyoung Choi, USC Leonard Davis PhD in Gerontology alumna and postdoctoral scholar, examined how biological age changed in more than 3600 Health and Retirement Study (HRS) participants aged 56 and older from throughout the U.S. Blood samples taken at various time points during the six-year study period were analysed for epigenetic changes, or changes in the way individual genes are turned “off” or “on” by a process called DNA methylation.

The researchers used mathematical tools called epigenetic clocks to analyse methylation patterns and estimate biological ages at each time point. They then compared participants’ changes in biological age to their location’s heat index history and number of heat days reported by the National Weather Service from 2010 to 2016.

The National Weather Service Heat Index Chart categorises heat index values into three levels based on the potential risk of adverse health effects. The “Caution” level includes heat index values ranging from 80°F (27°C) to 90°F (32°C), the “Extreme Caution” level includes values between 90°F (32°C) and 103°F (34°C), and the “Danger” level includes values between 103°F (34°C) and 124°F (51°C). Days in all three levels were included as heat days in the study.

The analysis revealed a significant correlation between neighbourhoods with more days of extreme heat and individuals experiencing greater increases in biological age, Choi said. This correlation persisted even after controlling for socioeconomic and other demographic differences, as well as lifestyle factors such as physical activity, alcohol consumption and smoking, she added.

“Participants living in areas where heat days, as defined as Extreme Caution or higher levels (32°C), occur half the year, such as Phoenix, Arizona, experienced up to 14 months of additional biological aging compared to those living in areas with fewer than 10 heat days per year,” she said. “Even after controlling for several factors, we found this association. Just because you live in an area with more heat days, you’re aging faster biologically.”

All three epigenetic clocks employed in the study – PCPhenoAge, PCGrimAge, and DunedinPACE – revealed this association when analysing epigenetic aging over a 1- to 6-year period. PCPhenoAge also showed the association after short (7 days) and medium (30-60 days) periods of time, indicating that heat-related epigenetic changes could happen relatively quickly, and some of them may accumulate over time.

Climate implications for communities

Older adults are particularly vulnerable to the effects of high heat, Ailshire said. She noted that the study used heat index, rather than just air temperature, to take relative humidity into account as they analyzed results.

“It’s really about the combination of heat and humidity, particularly for older adults, because older adults don’t sweat the same way. We start to lose our ability to have the skin-cooling effect that comes from that evaporation of sweat,” she explained. “If you’re in a high humidity place, you don’t get as much of that cooling effect. You have to look at your area’s temperature and your humidity to really understand what your risk might be.”

The next steps for the researchers will be to determine what other factors might make someone more vulnerable to heat-related biological aging and how it might connect to clinical outcomes. In the meantime, the study results could also prompt policymakers, architects, and others to keep heat mitigation and age-friendly features in mind as they update cities’ infrastructure, from placing sidewalks and building bus stops with shade in mind to planting more trees and increasing urban green space, Ailshire said.

“If everywhere is getting warmer and the population is aging, and these people are vulnerable, then we need to get really a lot smarter about these mitigation strategies,” she said.

Source: University of Southern California

Promising Findings in Testing Nasal Spray for TBI Treatment

Source: CC0

A new study led by researchers at Mass General Brigham suggests a nasal spray developed to target neuroinflammation could one day be an effective treatment for traumatic brain injury (TBI). By studying the effects of the nasal anti-CD3 in a mouse model of TBI, researchers found the spray could reduce damage to the central nervous system and behavioural deficits, suggesting a potential therapeutic approach for TBI and other acute forms of brain injury. The results are published in Nature Neuroscience.

“Traumatic brain injury is a leading cause of death and disability – including cognitive decline – and chronic inflammation is one of the key reasons,” said lead author Saef Izzy, MD, FNCS, FAAN, a neurologist and head of the Immunology of Brain Injury Program at Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system. “Currently, there is no treatment to prevent the long-term effects of traumatic brain injury.”

The study examines the monoclonal antibody Foralumab, made by Tiziana, which has been tested in clinical trials for patients with multiple sclerosisAlzheimer’s disease, and other conditions.

“This opens up a whole new area of research and treatment in traumatic brain injury, something that’s almost impossible to treat,” said senior author Howard Weiner, MD, co-director of the Ann Romney Center for Neurologic Diseases at Brigham and Women’s Hospital. “It also means this could work in intracerebral hemorrhage and other stroke patients with brain injury.”

Multiple experiments were done in mouse models with moderate-to-severe traumatic brain injury to explore the communication between regulatory cells induced by the nasal treatment and the microglial immune cells in the brain. Over time, researchers were able to identify how they modulate immune response.

“Modulating the neuroinflammatory response correlated with improved neurological outcomes, including less anxiety, cognitive decline, and improved motor skills,” Izzy said.

In addition to assessing the effects of the treatment, the research team was able to learn about immune response over time and compare the immune responses and effects of TBI in the mice.

The next step in the research is to translate the findings from preclinical models to human patients.

“Our patients with traumatic brain injury still don’t have an effective therapeutic to improve their outcomes, so this is a very promising and exciting time to move forward with something that’s backed up with solid science and get it to patients’ bedsides,” said Izzy.

Once in the clinical setting, Weiner said the hope is this treatment could be used on a variety of traumatic brain injury patients, including football players with repetitive concussions. 

“We envision giving a nasal spray right there on the sidelines,” said Weiner. “It isn’t something we can do yet, but we see the potential.”

Source: Mass General Brigham