Day: August 21, 2024

Global Study Predicts Disparities, Increases in Men’s Cancer Cases and Deaths

Results indicate the need for efforts to improve cancer outcomes equitably.

Credit: Darryl Leja National Human Genome Research Institute National Institutes Of Health

In an analysis of 30 cancer types among men, investigators uncovered substantial disparities in cancer cases and deaths by age and countries’ economic status – disparities that are projected to widen by 2050. The study is published by Wiley online in CANCER, a peer-reviewed journal of the American Cancer Society.

Men face higher rates of cancer and cancer-related deaths than women, likely due to various factors including lower participation in cancer prevention activities; underuse of screening and treatment options; increased exposure to cancer risk factors such as smoking, alcohol consumption, and occupational exposure to carcinogens; and biological differences.

To assess the burden of cancer in men of different ages and living in different regions of the world, investigators analyzed 2022 information from the Global Cancer Observatory, which encompasses national-level estimates for cancer cases and deaths for 185 countries/territories worldwide. The projected cancer cases and deaths in 2050 were derived through demographic projections: the researchers multiplied the 2022 age-specific rates with their corresponding population projections for 2050.

In 2022, poorer survival was observed among older men; for rare cancer types such as pancreatic cancer; and in countries with low human development index, which measures health, education, and standard of living.

Between 2022 and 2050, cancer cases are projected to increase from 10.3 million to 19 million, an 84% increase. Deaths are projected to increase from 5.4 million to 10.5 million, a 93% increase, with a greater than two-fold increase among men aged 65+ years and for countries/territories with low and medium human development index.

The research reveals an urgent need to address these trends and ensure equity in cancer prevention and care among men globally.

“A national and international collaboration, as well as a coordinated multisectoral approach, are essential to improve current cancer outcomes and to reverse the anticipated rise in cancer burden by 2050. Implementing and expanding universal health coverage and expanding health infrastructure and establishing publicly funded medical schools and scholarships for training medical and public health staff can improve cancer care and equity,” said lead author Habtamu Mellie Bizuayehu, PhD, of the University of Queensland, in Australia. “Emphasis should be placed on low and medium human development index countries with high unmet cancer service needs despite a significant cancer burden.

Dr Bizuayehu added that improving access to and use of cancer prevention, screening, diagnosis, and treatment options, especially for older men, could also improve cancer outcomes and equity.

Source: Wiley

Applying AI to EHRs Ensures Better Outcomes and Insights

Photo by Christina Morillo

This week the GIBS, (Gordon Institute of Business Science), held an on-campus Healthcare Industry Insights Conference aimed at healthcare professionals and others with an interest in this field to hear from experts providing insightful discussion and frank debate. 

The sessions were each themed to different topics such as Innovation for Sustainable Access and Quality Care, Building a Skilled Workforce, navigating Public-Private Partnerships and Addressing Social Determinants. 

The day ended with a focus on Digital Transformation and advances in medical device manufacturing, were discussed. 

Dilip Naran, Vice President of Product Architecture at CompuGroup Medical South Africa, (an internationally leading MedTech provider), has over 25 years of dedicated service to the South African healthcare market, and was asked to share his thoughts on the next generation of digital health. 

Naran has been actively involved in shaping both billing and clinical applications and has been a key player in the creation of cutting-edge cloud-based solutions that have revolutionised the way healthcare professionals operate in South Africa. 

Improving workflow processes

The discussion focused on the AI and Electronic Health Records (EHRs), and how by harnessing the power of AI, healthcare providers can unlock unprecedented insights, enhance patient care and drive operational efficiencies.

The topical subject began by reminding the audience that AI has already improved the EHR data management. By extracting valuable insights from clinical notes, automation of repetitive tasks, analysing data to identify patterns and facilitating the seamless integration of multiple data sources. AI advances in HER and medical devices have reshaped the doctor / patient healthcare journey. 

To continue this growth, AI powered tools must be implemented in EHRs to enable functionality that enhance the Dr/Patient journey. Some benefits of AI powered EHRs include: 

  • Effective Clinical Decision Support 
  • Intelligent Automation. This includes improvement in workflow by automating certain tasks 
  • Smart Medication management . Ai can alert HCP to potential drug interactions and adverse effects 
  • Predictive Analytics that are personalised based on patient history 

Adoption in South Africa

Whilst some of the AI technologies are not yet available in South Africa, CGM’s recently launched Autoscriber solution which uses AI technologies such as Natural Language Processing NLP and a Large Language Model (LLM) has enabled South African HCPs to use this solution to create structured notes which includes diagnoses ICD10 and SNOMED coding. This assists the HCP in populating their HER without having to physically capture information. 

At the moment the adoption rate of EHR in practices is around 30% in the private sector, with oncology leading the way. 

With collaboration between government, private and public sector, existing technologies can forecast disease outbreaks, identify high-risk patients and optimise resource allocation. 

Dilip Naran concluded by saying: “The use of AI technologies and processes can facilitate the meaningful use of data in EHRs and lead to better patient outcomes” 

What Time at Night a Malaria Mosquito Bites Impacts Infection

Photo by Ekamelev on Unsplash

Researchers have discovered that what time of the night a malaria-bearing mosquito bites may have significant effect on the subsequent infection’s severity.

When mice are infected in the middle of the night with the parasites causing cerebral malaria, the symptoms of the disease are less severe than for those inflected during the day, and the spread of the parasites within the hosts is more limited, research teams from McGill University, the Douglas Research Centre and the Research Institute of the McGill University Health Centre have discovered.

Malaria is a mosquito-borne infectious disease that affects hundreds of millions of people worldwide. It kills more than half a million people each year, most of them children. Cerebral malaria is the deadliest form of the disease.

The researchers’ findings, published in the journals iScience and ImmunoHorizons, have the potential to lead to new treatment practices based on aligning medication with our circadian rhythms.

How circadian rhythms of host and parasite interact

Circadian rhythms are defined as physiological and behavioral oscillations with cycles of approximately 24 hours, matching the Earth’s rotation, that persist in the absence of environmental timing cues. These rhythms are regulated by a master clock in the brain, as well as by clocks located in most other organs and cell types throughout the organism.

“We explored how the circadian rhythms of both the host and the malaria parasite interact to affect the severity of the disease and the host’s ability to fight off the parasite,” said Priscilla Carvalho Cabral, a recent McGill PhD graduate who carried out the experiments described in two recent studies on the subject.

Nicolas Cermakian, Director of the Laboratory of Molecular Chronobiology, and the corresponding author of the two studies, noted, “The difference in a host’s response to infection depending on the time of day suggests that their circadian rhythms could be influencing the progression of the disease. How such immune clocks impact malaria has not been looked at before.”

An important advance in knowledge

In parasites and their animal hosts, as well as in most living organisms, many bodily functions are under circadian control. It is known, for instance, that the replication of malaria parasites inside the red blood cells of a host follows a daily rhythm. Previous work from the same team has already shown that another serious parasitic disease, leishmaniasis, is affected by host clocks: the time of infection influences the replication of the parasite as well as the immune response to it. In the new studies, the same was found to be true for cerebral malaria.

“Our results represent an important advance in knowledge since many of the mechanisms driving the rhythms in susceptibility to diseases, especially parasitic diseases, remain largely unknown,” says Martin Olivier, Director of the Laboratory for the Study of Host-Parasite Interaction, a professor in McGill’s Department of Microbiology and Immunology and co-author of the two studies.

Source: McGill University

An Antioxidant Found in Rosemary may Help Treat Cocaine Addiction

Photo by Colin Davis on Unsplash

A team of researchers led by the University of California, Irvine has discovered that an antioxidant found in rosemary extract can reduce volitional intakes of cocaine by moderating the brain’s reward response, offering a new therapeutic target for treating addiction.

The study, recently published online in the journal Neuron, describes team members’ focus on a region of the brain called the globus pallidus externus, which acts as a gatekeeper that regulates how we react to cocaine. They discovered that within the GPe, parvalbumin-positive neurons are crucial in controlling the response to cocaine by changing the activity neurons releasing the pleasure molecule dopamine.

“There are currently no effective therapeutics for dependence on psychostimulants such as cocaine, which, along with opioids, represent a substantial health burden,” said corresponding author Kevin Beier, UC Irvine associate professor of physiology and biophysics. “Our study deepens our understanding of the basic brain mechanisms that increase vulnerability to substance use disorder-related outcomes and provides a foundation for the development of new interventions.”

Findings in mice revealed that globus pallidus externus parvalbumin-positive cells, which indirectly influence the release of dopamine, become more excitable after being exposed to cocaine. This caused a drop in the expression of certain proteins that encode membrane channels that usually help keep the globus pallidus cell activity in check. Researchers found that carnosic acid, an isolate of rosemary extract, selectively binds to the affected channels, providing an avenue to reduce response to the drug in a relatively specific fashion.

“Only a subset of individuals are vulnerable to developing a substance use disorder, but we cannot yet identify who they are. If globus pallidus cell activity can effectively predict response to cocaine, it could be used to measure likely responses and thus serve as a biomarker for the most vulnerable,” Beier said. “Furthermore, it’s possible that carnosic acid could be given to those at high risk to reduce the response to cocaine.”

The next steps in this research include thoroughly assessing negative side effects of carnosic acid and determining the ideal dosage and timing. The team is also interested in testing its efficacy in reducing the desire for other drugs and in developing more potent and targeted variants.

Source: University of California Irvine

Study Reveals Diet is the Main Risk Factor for Colon Cancer in Younger Adults

Photo by Alex Haney

A new Cleveland Clinic study has identified diet-derived molecules called metabolites as main drivers of young-onset colorectal cancer risk, especially those associated with red and processed meat. The NPJ Precision Oncology report, which analysed metabolite and microbiome datasets, highlighted that one of the best ways a younger ( < 60 years) adult can prevent colorectal cancer is to discuss their diet with their doctor.

Increased monitoring and screening for colorectal cancer is an extremely helpful tool. Despite the success of these methods, these data indicate physicians can take a different approach with their younger patients, says senior author and gastrointestinal oncologist Suneel Kamath,MD.

“At the end of the day, it’s impractical to apply our care models for those over 60 to younger adults simply because we cannot give everyone in the system yearly colonoscopies,” he explains. “What is much more feasible is to give everyone in the system a simple test to measure a biomarker that determines their colorectal cancer risk. Then we can give the most at-risk individuals appropriate screening.”

Former clinical fellow Thejus Jayakrishnan, MD, and Naseer Sangwan, PhD, director of the Microbial Sequencing & Analytics Resource Core co-led the work. Researchers in Cleveland Clinic’s Center for Young-Onset Colorectal Cancer provided large-scale analyses of patient data from individuals who received care for either young- or average-onset colorectal cancer at Cleveland Clinic.

One previous study from this team identified differences in the metabolites (diet-derived molecules) of young – versus average-onset colorectal cancer, while another identified differences in gut microbiome between younger and older adults with colorectal cancer. These studies provided many potential directions for studying young-onset CRC. However, when more factors are involved in cancer risk, it becomes more complicated to understand what’s going on and plan future research, Dr Sangwan says. Interactions between these factors, like when our gut bacteria consume our metabolites and produce their own, make it even more complex.

Dr Sangwan and his team then developed an AI algorithm to combine and analyse the existing studies’ datasets and clarify what factors are most relevant for future study. Surprisingly, Dr Sangwan’s analysis revealed that differences in diet (identified through analysing metabolites) accounted for a significant proportion of the differences observed between the young-onset and older-onset patients.

“Researchers – ourselves included – have begun to focus on the gut microbiome as a primary contributor to colon cancer risk. But our data clearly shows that the main driver is diet,” Dr Sangwan says. “We already know the main metabolites associated with young-onset risk, so we can now move our research forward in the correct direction.”

The team was excited to see diet play such a large role in cancer risk, because it is much easier to identify at-risk patients by counting the metabolites in their blood than it is to sequence the bacterial DNA in their stool for different microbes.

“It can actually be very complicated and difficult to change your microbiome,” explains Dr Kamath. “While it’s not always easy, it is much simpler to change your diet to prevent colon cancer.”

Addressing factors in our diet to prevent colon cancer

Younger colon cancer patients had higher levels of metabolites associated with the production and metabolism of an amino acid called arginine, and with the urea cycle compared to their older peers. These differences may be tied to long-term consumption of red meat and processed meat. The team is now analyzing national datasets to validate their Cleveland Clinic-specific findings in patients across the country.

After they show that arginine and urea cycle metabolites (and, by proxy, red and processed meat overconsumption) are elevated across younger adults with colon cancer nationwide, they plan to test whether certain diets or commercially available drugs that regulate arginine production and the urea cycle can help prevent or even treat young-onset colorectal cancer.

Dr Kamath says that even though more research is needed to understand exactly how dietary factors cause colon cancer, his current findings have already changed the way he delivers patient care.

“Even though I knew before this study that diet is an important factor in colon cancer risk, I didn’t always discuss it with my patients during their first visit. There is so much going on, it can already be so overwhelming,” says Dr Kamath. “Now, I always make sure to bring it up to my patients, and to any healthy friends or family members they may come in with, to try and equip them with the tools they need to make informed choices about their lifestyle.”

Source: Cleveland Clinic

Groundbreaking Study Discovers Differences in Oxygen Physiology in Down Syndrome

Source: Pixabay CC0

A groundbreaking new study published in Cell Reports by researchers from the University of Colorado Anschutz Medical Campus reports important differences in oxygen physiology and red blood cell function in individuals with Down syndrome. The study is part of the ongoing Human Trisome Project, a large and detailed cohort study of the population with Down syndrome, including deep annotation of clinical data, the largest biobank for the study of Down syndrome to date, and multi-omics datasets.

The Crnic Institute team first analysed hundreds of blood samples to identify physiological differences between research participants with Down syndrome versus controls from the general population. They observed that triplication of chromosome 21, or trisomy 21, the chromosomal abnormality that causes Down syndrome, leads to a physiological state reminiscent of hypoxia. They identified major changes in gene expression indicative of low oxygen availability, including induction of many hypoxia-inducible genes and proteins, as well as increased levels of factors involved in the synthesis of haeme, the molecule that transports oxygen inside red blood cells.

“These results reveal that hypoxia and hypoxic signalling should be front and centre when we talk about the health of people with Down syndrome,” says Dr Joaquín Espinosa, executive director of the Crnic Institute, professor of pharmacology, principal investigator of the Human Trisome Project, and one of the senior authors of the paper. “Given the critical role of oxygen physiology in health and disease, we need to understand the causes and consequences of hypoxia in Down syndrome, which could lead to effective interventions to improve oxygen availability in this deserving population.”

“The results are remarkable, it is safe to say that the blood of people with Down syndrome looks like that of someone who was quickly transported to a high altitude or who was injected with erythropoietin (EPO), the master regulator of erythropoiesis, the process of new red blood cell formation,” explains Dr Micah Donovan, lead author of the paper. “Although it has been known for many years that people with Down syndrome have fewer and bigger red blood cells, this is the first demonstration that they overproduce EPO and that they are undergoing stress erythropoiesis, a phenomenon whereby the liver and the spleen need to start producing red blood cells to supplement those arising from the bone marrow.”

The team discovered that these phenomena are also observed in a mouse model of Down syndrome, thus reinforcing the idea that these important physiological changes arise from triplication of genetic material and overexpression of specific genes.

“The fact that hypoxic signaling and stress erythropoiesis are conserved in the mouse model paves the way for mechanistic investigations that could identify the genes involved and reveal therapeutic interventions to improve oxygen physiology in Down syndrome,” explains Dr. Kelly Sullivan, associate professor of pediatrics, director of the Experimental Models Program at the Crnic Institute and co-author in the study.

The study team also investigated whether the elevated hypoxic signaling and associated stress erythropoiesis was tied to the heightened inflammatory state characteristic of Down syndrome. Although individuals with the stronger hypoxic signatures show more pronounced dysregulation of the immune system and elevated markers of inflammation, their results indicate that lowering inflammation does not suffice to reverse the hypoxic state.

“We will need a lot more data to understand what is causing the hypoxic state and its impacts on the health of people with Down syndrome,” says Dr Matthew Galbraith, assistant research professor of pharmacology, director of the Data Sciences Program at the Crnic Institute, and one of the senior authors of the paper. “The hypoxic state could be caused by obstructive sleep apnoea (which is common in Down syndrome), cardiopulmonary malfunction, or even perhaps defects in red blood cell function. We are very excited about several ongoing clinical trials funded by the NIH INCLUDE Project for obstructive sleep apnea in Down syndrome, which we believe will be very informative.”

The Crnic Institute study team is already planning several follow up studies, with the explicit goal of illuminating strategies to improve oxygen physiology in the population with Down syndrome.