Diabetic Neuropathy Drug Reduces Drug Resistance in Lung Cancer

In this image from a genetically engineered mouse model, lung cancer driven by the Kras oncogene shows up in purple. As a key driver in many types of cancer, the Kras gene makes a promising target for new cancer therapies. Credit: National Cancer Institute, National Institutes of Health

A medication used to treat diabetic neuropathy may enhance the effectiveness of chemotherapy for patients with lung cancer, according to new findings from the University of Missouri School of Medicine. Despite surgical and chemotherapy treatment, more than 50% of non-metastatic, non-small lung cancer patients see recurrences, in large part because of drug-resistant cancer cells. Researchers identified a way to make these cells more susceptible to chemotherapy, said Dr Jussuf Kaifi, author of the new study published in Clinical Cancer Research.

“Traditional treatments for lung cancer, including chemotherapy, often have little to no effect on the cancer because of drug resistance,” Kaifi said. “It is a major cause of mortality in patients, so finding ways to circumvent drug and chemotherapy resistance is vital to improving patient outcomes.”

The study examined 10 non-small cell lung cancer tumours, half of which were identified as drug resistant. The drug-resistant tumours showed overexpression of a certain enzyme, AKR1B10. When treated with the diabetic neuropathy medication, epalrestat, the tumours became less drug resistant, causing their sensitivity to chemotherapy to significantly increase.

Epalrestat is available in several countries (excluding South Africa) and well-tolerated by patients, but it is not yet approved for use by the Food and Drug Administration in the United States. The medication is currently in high-level clinical trials as part of the FDA’s approval process. If given FDA approval, epalrestat could be fast-tracked in the US as an anti-cancer drug for lung cancer patients.

“In general, developing new drugs for cancer treatment is an extremely lengthy, expensive and inefficient process,” Kaifi said. “In contrast, ‘repurposing’ these drugs to other diseases is much faster and cheaper. In view of overcoming drug resistance, epalrestat can rapidly be advanced to the clinic to improve cure rates in lung cancer patients.”

Source: University of Missouri

Leave a Reply

Your email address will not be published. Required fields are marked *