A 40 year-old man, Gert-Jan Oskam, has regained the ability to walk independently after being paralysed from a spinal cord injury with the use of a new brain-spine interface. The ‘digital bridging’ technology, developed at the Swiss Federal Institute of Technology in Lausanne and described in Nature, consists of implants and a computer to translate brain signals of the intention to move into stimulations that move the legs accordingly..
This BSI system could be calibrated in minutes, and remained stable for one year, including use at home. The BSI enabled the participant to exert natural control over the movements of his legs to stand, walk, climb stairs and even traverse complex terrains.
In addition to the digital bridging, neurorehabilitation supported by the BSI improved neurological recovery. The participant regained the ability to walk with crutches overground even when the BSI was switched off. This digital bridge establishes a framework to restore natural control of movement after paralysis.
The system consists of a pair cortical of sensors, each an array with 64 electrodes housed in 5cm-diameter titanium discs. These discs are implanted snugly in the skull to pick up brain activity. They transmit the data wirelessly to a personalised headset, which also provides power for the sensors. The headset then sends the data to a portable processing unit (which may be carried in a backpack). Using specialised software, it uses this brain signal data to generates real-time predictions of motor intentions. These decoded intentions are translated into stimulation commands and sent on to another implant, a paddle array of 16 electrodes implanted next to the spinal cord, delivering current to the targeted dorsal root entry zones.
Neurosurgical implantation procedure
Oskam had sustained an incomplete cervical (C5/C6) spinal cord injury during a biking accident 10 years previously. He had already participated in a neurological recovery programme, the STIMO trial, which had used neurostimulation to get him to the stage where he could walk with the aid of a front-wheel walker. The neurorehabilitation from the trial also enabled him to use his hip flexors and lift his legs against gravity, but recovery had plateaued for the three years prior to his participation in the present study.
For the BSI to function, the researchers needed to locate neural features related to the intention to move the legs. To pinpoint the cortical regions associated with the intention to move, they used CT scans and magnetoencephalography. Taking into account anatomical restraints, they then decided on the positions of the implants.
Under general anaesthesia, surgeons performed a bicoronal incision of the scalp to allow two circular-shaped craniotomies over the planned locations of the left and right hemispheres. They then replaced the bone flaps with the two implantable recording devices, before closing the scalp.
The paddle lead had already been emplaced over the dorsal root entry zones of the lumbar spinal cord during the STIMO clinical trial. Its optimal positioning was identified using high-resolution structural imaging of the spine, and its final position was decided during the surgery based on electrophysiological recordings. The implantable pulse generator was inserted subcutaneously in the abdomen. Oskam was able to return home 24 hours after each procedure.
An amazing system! Is this system available in South Africa?
Unfortunately, this is still very much in the development stages. Some of the components used in the system, such as the stimulation pulse generator (ACTIVA-RC) and the paddle (the Specify 5-6-5), seem to be commercially available though they may not have approval for use in South Africa.