Severed axons are unable to regenerate, which means that central nervous system (CNS) injuries such as to the spinal cord, can result in permanent loss of sensory and motor function. Presently, there are very limited options to help these patients regain their motor abilities. In mice, researchers have found that deleting a certain gene can cause axons to regrow. The results have recently been published in the scientific journal Neuron.
In a study using mice, a research team led by Associate Professor Kai Liu found that the deletion of PTPN2, a phosphatase-coding gene, in neurons can prompt axons to regrow. Combination with the type II interferon IFNγ, can accelerate the process and increase the number of axons regenerated.
Unlike the CNS, peripheral nerves have a greater ability to regrow and repair by themselves after injury. Scientists have yet to fully understand the relationship between this self-repair and the intrinsic immune mechanism of the nervous system. Thus, the team aimed to resolve how immune-related signalling pathways affected neurons after injury, and whether they could enhance axonal regeneration directly.
This study investigated whether the signalling pathway IFNγ-cGAS-STING had any role in the regeneration process of peripheral nerves. Researchers found that peripheral axons could directly modulate the immune response in their injured environment to promote self-repair after injury.
In previous research, Prof Liu’s team had already demonstrated that elevating the neuronal activity and regulating the neuronal glycerolipid metabolism pathway could boost axon regenerative capacity. The current study is providing further insights into the search of treatment solutions for challenging conditions such as spinal cord injuries, with one possible option being the joining of several types of different signalling pathways.
Source: EurekAlert!