Study Reveals That Breast Cancer Spreads at Night

Sleeping woman
Photo by Cottonbro on Pexels

Researchers previously assumed that metastasising tumours release cells continuously. However, a new study has reached a surprising conclusion: circulating cancer cells that later form metastases mainly arise during the sleep phase of the affected individuals. This may have implications for oncologists, as timing of samples may affect their results. The study findings have just been published in Nature.

Circadian rhythm-regulated hormones control metastasis

“When the affected person is asleep, the tumour awakens,” said study leader Professor Nicola Aceto at ETH Zurich. During their study, which included 30 female cancer patients and mouse models, the researchers found that the tumour generates more circulating cells when the organism is asleep. Cells that leave the tumour at night also divide more quickly and therefore have a higher potential to form metastases, compared to circulating cells that leave the tumour during the day.

“Our research shows that the escape of circulating cancer cells from the original tumour is controlled by hormones such as melatonin, which determine our rhythms of day and night,” said Zoi Diamantopoulou, the study’s lead author and a postdoctoral researcher at ETH Zurich.

An accidental discovery led to the study

In addition, the study indicates that the time in which tumour or blood samples are taken for diagnosis may influence the findings of oncologists. It was an accidental finding along these lines that first put the researchers on the right track, “Some of my colleagues work early in the morning or late in the evening; sometimes they’ll also analyse blood at unusual hours,” Prof Aceto said with a smile. The scientists were surprised to find that samples taken at different times of the day had very different levels of circulating cancer cells.

Another clue was the surprisingly high number of cancer cells found per unit of blood in mice compared to humans. The reason was that as nocturnal animals, mice sleep during the day, which is when scientists collect most of their samples.

“In our view, these findings may indicate the need for healthcare professionals to systematically record the time at which they perform biopsies,” Prof Aceto said. “It may help to make the data truly comparable.”

The researchers’ next step will be to figure out how these findings can be incorporated into existing cancer treatments to optimise therapies. As part of further studies with patients, Prof Aceto wants to investigate whether different types of cancer behave similarly to breast cancer and whether existing therapies can be made more successful if patients are treated at different times.

Source: ETH Zurich