Tiny Implantable Electrodes to Treat Drug-resistant Neuropathic Pain

Woman holding her wrist in pain
Credit: Pixabay CC0

Using a rice-grain sized wireless implant to stimulate peripheral nerves from within blood vessels could potentially treat drug-resistant neuropathic pain, according to a study published in Nature Biomedical Engineering.

After receiving a grant, a team set out to create implantable, wirelessly powered nerve stimulators that can be used in place of opioids for pain management. The 1-millimetre large implants are small enough to be placed on stents and delivered within blood vessels adjacent to specific areas of the central and peripheral nervous system.

Co-principal investigator of the study, Sunil A. Sheth, MD, explained: “We’re getting more and more data showing that neuromodulation, or technology that acts directly upon nerves, is effective for a huge range of disorders—depression, migraine, Parkinson’s disease, epilepsy, dementia, etc. – but there’s a barrier to using these techniques because of the risks associated with doing surgery to implant the device, such as the risk of infection. If you can lower that bar and dramatically reduce those risks by using a wireless, endovascular method, there are a lot of people who could benefit from neuromodulation.”

Neuropathic pain can be a disabling disorder that accounts for nearly 40% of chronic pain sufferers, often leading to anxiety, depression, and opioid addiction. Previous studies showed that electrical stimulation is an effective treatment for reducing pain when doctors target the spinal cord and dorsal root ganglia (DRG), a bundle of nerves that carry sensory information to the spinal cord. However, existing DRG stimulators require invasive surgery to implant a battery pack and pulse generator.

According to the researchers, this new type of technology offers a way to perform minimally invasive bioelectronic therapy that helps with more precise placement of the implant and more predictable outcomes. The team are hoping to move forward with regulatory approval, which Dr Sheth estimates may take a few years.

Source: The University of Texas Health Science Center