Immunity to Other Coronaviruses Confers COVID Protection

Transmission electron micrograph of SARS-CoV-2 virus particles (gold) within endosomes of a heavily infected nasal Olfactory Epithelial Cell. Image captured at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Credit: NIAID

Researchers have discovered another component beside previous infection or vaccination that contributes to SARS-CoV-2 immunity – previous antibody responses to other, harmless coronaviruses. “People who have had strong immune responses to other human coronaviruses also have some protection against SARS-CoV-2 infection,” said Alexandra Trkola, head of the Institute of Medical Virology at University of Zurich.

The study, published in Nature Communication, used a specially developed assay to analyse antibody levels against four other human coronaviruses in 825 serum samples taken before  the emergence of SARS-CoV-2, as well as 389 samples from donors infected with the virus. Combining these analyses with computer-based models enabled the team to precisely predict how well the antibodies would bind to and neutralise invading viruses.

The researchers were able to demonstrate that people who caught SARS-CoV-2 had lower levels of antibodies against coronaviruses that cause common colds compared to uninfected people. In addition, people with high levels of antibodies against harmless coronaviruses were less likely to have been hospitalized after catching SARS-CoV-2. “Our study shows that a strong antibody response to human coronaviruses increases the level of antibodies against SARS-CoV-2. So someone who has gained immunity to harmless coronaviruses is therefore also better protected against severe SARS-CoV-2 infections,” says Trkola. This type of immune response is referred to as cross-reactivity, and it also occurs with T cell responses,  the additional line of the immune system in the defense against infections.

People are only fully protected against SARS-CoV-2 shortly after they have recovered from an infection or have received an effective vaccination. This is when antibody levels against the virus are still very high. As these levels drop over time, infection is no longer prevented, but the immunological memory quickly reactivates the body’s defenses, the production of antibodies as well as the T cell defense. “Of course, immune responses targeting SARS-CoV-2 that are mounted by the memory cells are far more effective than cross-reactive responses. But even though the protection isn’t absolute, cross-reactive immune responses shorten the infection and reduce its severity. And this is exactly what is also achieved through vaccination, just much, much more efficiently,” said Trkola.

Whether cross-reactivity also works in the opposite direction is not yet known. “If SARS-CoV-2 immunity also offers some degree of protection from infection with other coronaviruses, we would be a significant step closer to achieving comprehensive protection against other coronaviruses, including any new variants,” the virologist explains. This idea is also supported by the fact that cross-reactive protection is not only based on antibodies, but very likely also on T cells.

Source: University of Zurich