Brain Glue Heals Neural Damage from Brain Injuries
In a new study, researchers at the University of Georgia’s (UGA) Regenerative Biosciences Center have shown that the “brain glue” they developed protects against loss of brain tissue after a severe injury, and may also help in functional neural repair.
Significant traumatic brain injury (TBI) commonly results in extensive tissue loss and long-term disability, with no clinical treatments available to prevent this.
The new finding is the first to provide visual and functional evidence of the repair of brain neural circuits involved in reach-to-grasp movement in brain glue-implanted animals following severe TBI.
“Our work provides a holistic view of what’s going on in the recovery of the damaged region while the animal is accomplishing a specific reach-and-grasp task,” said lead investigator Lohitash Karumbaiah, an associate professor in the University of Georgia’s College of Agricultural and Environmental Sciences.
The brain glue developed by Prof Karumbaiah was designed to mimic the meshwork of sugars supporting brain cells. The hydrogel contains key structures that bind to two protective protein factors that can enhance the survival and regrowth of brain cells after severe TBI: basic fibroblast growth factor and brain-derived neurotrophic factor.
In previous research, Prof Karumbaiah and his team demonstrated that the brain glue conferred significant protection to brain tissue from severe TBI damage. In order to tap the neuroprotective capability of the original, they changed the delivery surface of protective factors to help accelerate the regeneration and functional activity of brain cells.
“Animal subjects that were implanted with the brain glue actually showed repair of severely damaged tissue of the brain,” said Karumbaiah. “The animals also elicited a quicker recovery time compared to subjects without these materials.”
The team used a tissue-cleaning method to make the brain less opaque, allowing them to 3-D image the cells’ response in the reach-to-grasp circuit, which is similar in rats and humans.
“Because of the tissue-clearing method, we were able to obtain a deeper view of the complex circuitry and recovery supported by brain glue,” said Prof Karumbaiah. “Using these methods along with conventional electrophysiological recordings, we were able to validate that brain glue supported the regeneration of functional neurons in the lesion cavity.”
“Doing the behavioral studies, the animal work and the molecular work sometimes takes a village,” said Karumbaiah. “This research involved a whole cross-section of RBC undergraduate and graduate students, as well as faculty members from both UGA and Duke University.”
Source: Medical Xpress
Journal information: Charles-Francois V. Latchoumane et al. Engineered glycomaterial implants orchestrate large-scale functional repair of brain tissue chronically after severe traumatic brain injury, Science Advances (2021). DOI: 10.1126/sciadv.abe0207